Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 765-771    DOI: 10.11902/1005.4537.2023.217
Current Issue | Archive | Adv Search |
Effect of Magnetic Field on Anodic Processes of X70 Pipeline Steel in Sodium Carbonate Solution
LI Xiaohui, TAO Yiqi, HUANG Hao, ZHANG Zhicheng, LI Entong, LYU Zhanpeng(), CHEN Junjie
Institute of Materials, School of Materials Science and Engineering, Shanghai University, State Key Laboratory of Advanced Special Steels, Shanghai 200072, China
Cite this article: 

LI Xiaohui, TAO Yiqi, HUANG Hao, ZHANG Zhicheng, LI Entong, LYU Zhanpeng, CHEN Junjie. Effect of Magnetic Field on Anodic Processes of X70 Pipeline Steel in Sodium Carbonate Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 765-771.

Download:  HTML  PDF(3796KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pipeline integrity is maintained mainly by coating and cathodic protection (CP). The interaction between hydroxyl ions produced by CP-driven cathode reactions, such as water reduction, and carbon dioxide in soil generated by the decay of organic matter may develop high-pH of concentrated carbonate-bicarbonate electrolyte. The dominant anodic dissolution process of the corrosion of pipeline steel in the exposed environment could cause the degradation of the pipeline. In addition, aggressive ions, such as chloride ions, existed in soils would have an accelerating effect on the anodic process. The effect of 0.4 T magnetic field on the anodic process of X70 pipeline steel in sodium carbonate solution with and without chloride ions was studied using anodic polarization curve measurement, potentiodynamic scanning and potentiostatic polarization measurement. The anodic polarization curves of X70 pipeline steel in sodium carbonate solution show that the applied magnetic field increases the current density of oxygen evolution reaction at a high potential range, while has no significant effect on the anodic reaction at the passive range. In the sodium carbonate solution containing chloride ions, when the potentials for potentiostatic polarization are located in the passive range near the transition range of the potentiodynamic polarization curve; the potentiostatic polarization curves exhibit the characteristic of rapid active dissolution, and the applied magnetic field inhibits the anodic dissolution. When rapid anodic dissolution reaction and oxygen evolution reaction occur simultaneously at a high potential range, the effect of the magnetic field is not significant. The difference in anodic polarization current density obtained by potentiodynamic scanning polarization and potentiostatic polarization is due to the differences in electrode surface state and electrode reaction type caused by different polarization methods, leading to the alteration of the magnetic field effect.

Key words:  pipeline steel      magnetic field      anodic polarization      sodium carbonate      chloride ion      oxygen evolution reaction     
Received:  10 July 2023      32134.14.1005.4537.2023.217
ZTFLH:  TG174.3  
Fund: National Natural Science Foundation of China(52271060)
Corresponding Authors:  LYU Zhanpeng, E-mail: zplu@t.shu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.217     OR     https://www.jcscp.org/EN/Y2024/V44/I3/765

Fig.1  Anodic polarization curves of X70 steel in 0.2 mol/L Na2CO3 solution with or without magnetic field: (a) OCP-1.80 VSCE, (b) OCP-0.80 VSCE, (c) 0.70 VSCE-1.20 VSCE, (d) 1.10 VSCE-1.80 VSCE
Fig.2  Anodic polarization curves of X70 steel in 0.2 mol/L Na2CO3 + 0.1 mol/L NaCl solution with or without magnetic field: (a) OCP-1.80 VSCE, (b) OCP-0.86 VSCE
Fig.3  Effect of applying or withdrawing magnetic field on current density of X70 steel in 0.2 mol/L Na2CO3 solution at 0.00 VSCE (a), 0.50 VSCE (b), 0.80 VSCE (c), 1.00 VSCE (d), 1.20 VSCE (e) and 1.40 VSCE (f)
Fig.4  Effect of applying or withdrawing magnetic field on current density of X70 steel in 0.2 mol/L Na2CO3 + 0.1 mol/L NaCl solution at 0.10 VSCE (a), 0.15 VSCE (b), 0.20 VSCE (c), 0.50 VSCE (d) and 1.00 VSCE (e)
Fig.5  Potential-pH (E-pH) diagram of Fe-H2O system at 25oC, based on the data reported in Refs. [14-17]
1 Gao Z Y, Zhang H Y, Gao P. New progress in China's oil and gas pipeline construction in 2022 [J]. Int. Pet. Econ., 2023, 31(3): 16
高振宇, 张慧宇, 高 鹏. 2022年中国油气管道建设新进展 [J]. 国际石油经济, 2023, 31(3): 16
2 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
3 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 501
4 Yang Y, Ran W S, Li L T, et al. Effect of residual magnetic field in magnetic flux leakage detection on DC stray current corrosion behavior of oil and gas pipeline [J]. Pressure Vessel Technol., 2023, 40(1): 75
杨 永, 冉文燊, 李林涛 等. 漏磁检测剩余磁场对油气管道直流杂散电流腐蚀行为的影响 [J]. 压力容器, 2023, 40(1): 75
5 Yang C, Zhang C B, Li Z L, et al. Effects of direct current interference on corrosion behavior of X65 steel [J]. Corros. Prot., 2016, 37: 873
杨 超, 张成斌, 李自力 等. 直流杂散电流对X65钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 873
6 Qing R Z, Du Y X, Lu M X, et al. Study of interference parameters variation regularity and corrosion behavior of X80 steel in Guangdong soil under high voltage direct current interference [J]. Acta Metall. Sin., 2018, 54: 886
doi: 10.11900/0412.1961.2017.00311
秦润之, 杜艳霞, 路民旭 等. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究 [J]. 金属学报, 2018, 54: 886
doi: 10.11900/0412.1961.2017.00311
7 Yuan X, Du Y X, Liang Y, et al. Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors [J]. Chin. J. Eng., 2021, 43: 1560
袁 洵, 杜艳霞, 梁毅 等. 高压直流干扰大幅值管地电位产生原因及影响因素分析 [J]. 工程科学学报, 2021, 43: 1560
8 Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
张康南, 吴 明, 谢飞 等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 148
doi: 10.11902/1005.4537.2016.001
9 Xie F Q, Wu X Q, Bai Z Q, et al. Study of corrosion behavior of magnetic field on the steel of oil sewage pipeline [J]. China Pet. Mach., 2006, 34(12): 1
谢发勤, 吴向清, 白真权 等. 磁场对石油污水管线钢的腐蚀行为研究 [J]. 石油机械, 2006, 34(12): 1
10 Fang B Y, Atrens A, Wang J Q, et al. Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions [J]. J. Mater. Sci., 2003, 38: 127
doi: 10.1023/A:1021126202539
11 Lu Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
doi: 10.1016/S0010-938X(03)00045-3
12 Lu Z P, Chen J M. Magnetic field effects on anodic polarisation behaviour of iron in neutral aqueous solutions [J]. Br. Corros. J., 2000, 35: 224
doi: 10.1179/000705900101501281
13 Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
14 Pourbaix M, Staehle R W. Lectures on Electrochemical Corrosion [M]. New York: Springer, 1973: 201
15 Yang X Z, Zhang H M. A review on Pourbaix diagrams and their applications in metal corrosion and its prevention [J]. J. Shandong Univ. (Eng. Sci.), 1982, (2): 1
杨熙珍, 张鹤呜. 布拜图及其在金属腐蚀与防护中的应用(综论) [J]. 山东工学院学报, 1982, (2): 1
16 Chen J J, Xiao Q, Lü Z P, et al. Effects of sulfate ions on anodic dissolution and passivity of iron in slightly alkaline solutions [J]. Acta Phys. Chim. Sin., 2015, 31: 1093
doi: 10.3866/PKU.WHXB201504032
17 Ejaz A, Lu Z P, Chen J J, et al. The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions [J]. Corros. Sci., 2015, 101: 165
doi: 10.1016/j.corsci.2015.09.013
18 Zha Q X. Introduction to Electrode Process Dynamics [M]. Beijing: Science Press, 1976
查全性. 电极过程动力学导论 [M]. 北京: 科学出版社, 1976
19 Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces [J]. ChemCatChem, 2011, 3: 1159
doi: 10.1002/cctc.v3.7
20 Garcés-Pineda F A, Blasco-Ahicart M, Nieto-Castro D, et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media [J]. Nat. Energy, 2019, 4: 519
doi: 10.1038/s41560-019-0404-4
[1] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[2] GUO Shiwen, WU Haozhi, DONG Shaohua, CHEN Lin, CHENG Frank. Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[3] SHANG Baihui, MA Yuantai, MENG Meijiang, LI Ying, LOU Ming, BAI Jing. Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[4] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[5] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[7] ZHANG Yuguo, SUN Congtao, ZHANG Peng, SUN Ming, GENG Yuanjie, FAN Liang, ZHAI Xiaofan, DUAN Jizhou. Effect of Synthetic Calcium Silicate Hydrate (C-S-H) on Combination of Chloride Ions with Cementitious Materials[J]. 中国腐蚀与防护学报, 2024, 44(1): 197-203.
[8] LIU Jing, CHEN Xuandong, YU Aiping, GONG Xinzhi. Multi-phase Mesoscopic Numerical Simulation of Chloride Ion Diffusion in Recycled Aggregate Concrete[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[9] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[10] YAO Chan, CHEN Jian, MING Hongliang, WANG Jianqiu. Research Progress on Hydrogen Permeability Behavior of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[11] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[12] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[13] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[14] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[15] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
No Suggested Reading articles found!