Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1303-1311    DOI: 10.11902/1005.4537.2022.375
Current Issue | Archive | Adv Search |
Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments
GUO Zhao, LI Han, CUI Zhongyu(), WANG Xin, CUI Hongzhi
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1303-1311.

Download:  HTML  PDF(15675KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to understand the adaptability and failure mechanism of landing gear materials for amphibious aircraft in marine environment, the failure behavior of A100 ultra-high strength steel beneath an unsteady thin electrolyte layer (TEL) and in artificial seawater (ASW) was studied via immersion test, slow strain rate tensile test and electrochemical measurements. The results show that in comparison with the test in ASW, the charge transfer resistance of A100 steel beneath TEL is significantly reduced, correspondingly, the steel corrosion is significantly promoted, and the deposition of corrosion products is more obvious. Due to the existence of TEL, the oxygen reduction process and the deposition of corrosion products was all promoted. Meanwhile, the corrosion process under the dynamic TEL was stimulated due to the presence of reduction reaction of the Fe3+ within the corrosion products accompanied with the efficient dissolved oxygen, which then resulted in the occurrence of obvious uniform corrosion beneath the corrosion products. Similarly, A100 steel is more sensitive to stress corrosion cracking (SCC), when the test steel is covered with TEL, because the accelerating corrosion process may lead to the decreases of the effective bearing cross-sectional area of A100 steel. At the same time, the acidification process beneath the corrosion product layer promotes the hydrogen precipitation reaction and accelerates the SCC reaction process. It follows that the significant increase of the sensitivity of SCC for A100 steel may be ascribed to both the strength loss and elongation loss during the SCC testing in TEL environment.

Key words:  ultra-high strength steel      dynamic thin electrolyte layer      corrosion      SCC     
Received:  01 December 2022      32134.14.1005.4537.2022.375
ZTFLH:  TG172  
Fund: Equipment Advance Research Field Fund(80922010601);Key Research and Development Program of Shandong Province(2020CXGC010305)
Corresponding Authors:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.375     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1303

Fig.1  Metallographic image (a) and SEM image (b) of A100 steel
Fig.2  Schematic diagram of electrochemical sample (a) and two-electrode system (b) in TEL environment
Fig.3  Schematic diagram of sample (a) and home-made thin electrolyte layer stretching experimental device (b)
Fig.4  Corrosion product morphologies (a, b, d, e) and corrosion surface morphologies (c, f) of service state A100 steel after 24 h (a-c) and 72 h (d-f) immersion in ASW and the EDS results (g-j)
Fig.5  Corrosion product morphologies (a, b, d, e) and corrosion surface morphology (c, f) of service state A100 steel after 24 h (a-c) and 72 h (d-f) corrosion in TEL and the EDS results (g-j)
Fig.6  XRD analysis of A100 steel soaked in solution environment and thin liquid film environment for 24 h (a) and 72 h (b)
Fig.7  Nyquist (a) and Bode (b) diagrams of A100 steel in solution and TEL environments and Equivalent circuit diagram (c)
Solution

Rs

Ω·cm2

CPEdl

Ω-1·cm-2·S n

n1

Rct

Ω·cm2

CPEf

Ω-1·cm-2·S n

n2

Rf

Ω·cm2

Rp

Ω·cm2

χ2
ASW18.13.708×10-40.791045.91.565×10-40.8511021.012066.91.755×10-4
TEL162.63.362×10-40.53229.86.744×10-30.7110340.010569.84.476×10-3
Table 1  Fitted electrochemical parameters for EIS of service state A100 steel in ASW and in TEL
Fig.8  Stress-strain curves (a) and SCC susceptibility based on elongation loss (b) of A100 steel in the two environments
Fig.9  Fracture morphologies of service state A100 steel in air (a1-a3), ASW (b1-b3) and TEL (c1-c3)
Fig.10  Schematic diagram of stress corrosion mechanism of A100 steel in artificial seawater environment (a) and thin liquid film environment (b)
1 Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad [J]. J. Ordnance Equip. Eng., 2021, 42(7): 274
牛艳娥, 赵芃沛, 李宁 等. 国内外超高强度钢的研究现状及应用 [J]. 兵器装备工程学报, 2021, 42(7): 274
2 Zhao B, Xu G X, He F, et al. Present status and prospect of Ultra High strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1
3 Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
doi: 10.1016/j.stam.2007.08.010
4 Feng L M, Shen H Q, Zhu Y J, et al. Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres [J]. Sci. Rep., 2017, 7: 41260
doi: 10.1038/srep41260 pmid: 28120906
5 Zhang X, Zhang J X, Chen Q M, et al. Effect of direct current electric field intensity and electrolyte layer thickness on oxygen reduction in simulated atmospheric environment [J]. Corros. Sci., 2019, 148: 206
doi: 10.1016/j.corsci.2018.12.013
6 Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504
赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504
doi: 10.11902/1005.4537.2019.032
7 Huang H L, Bu F R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer [J]. Corros. Eng. Sci. Technol., 2019, 54: 257
doi: 10.1080/1478422X.2019.1576351
8 Huang H L, Bu F R, Tian J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer [J]. J. Electron. Mater., 2017, 46: 6936
doi: 10.1007/s11664-017-5727-y
9 Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624
doi: 10.1016/j.corsci.2010.07.009
10 Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
11 Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046
12 Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2003, 34A: 327
13 Zhang T, Chen C M, Shao Y W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921
doi: 10.1016/j.electacta.2008.05.074
14 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
15 Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
doi: 10.1016/j.conbuildmat.2019.117903
16 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
17 Zhao Q Y, Fan Y, Fan E D, et al. Influence factors and corrosion resistance criterion of low-alloy structural steel [J]. Chin. J. Eng., 2021, 43: 255
赵起越, 范 益, 范恩点 等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据 [J]. 工程科学学报, 2021, 43: 255
18 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Sci. Eng., 2012, (1): 42
于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
19 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
20 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
doi: 10.11902/1005.4537.2020.172
21 Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
doi: 10.11902/1005.4537.2019.282
22 Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726
doi: 10.1007/s11771-012-1333-6
23 Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
doi: 10.1016/j.corsci.2006.02.011
24 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
doi: 10.1016/j.corsci.2022.110490
25 Shao X F, Cao B, Ce L X, et al. Relations between hydrogen-induced cracking and anode dissolution of pipeline steel X70 in near-neutral environment [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 76
邵绪分, 曹 备, 车立新 等. X70管线钢近中性环境氢致开裂与阳极溶解的关系 [J]. 中国腐蚀与防护学报, 2008, 28: 76
26 Larignon C, Alexis J, Andrieu E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media [J]. Corros. Sci., 2013, 69: 211
doi: 10.1016/j.corsci.2012.12.005
27 Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci., 2005, 47: 1545
doi: 10.1016/j.corsci.2004.07.044
[1] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[4] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[5] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[6] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[7] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[8] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[9] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[10] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[11] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[12] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[13] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[14] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[15] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
No Suggested Reading articles found!