|
|
Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments |
GUO Zhao, LI Han, CUI Zhongyu( ), WANG Xin, CUI Hongzhi |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
Cite this article:
GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1303-1311.
|
Abstract In order to understand the adaptability and failure mechanism of landing gear materials for amphibious aircraft in marine environment, the failure behavior of A100 ultra-high strength steel beneath an unsteady thin electrolyte layer (TEL) and in artificial seawater (ASW) was studied via immersion test, slow strain rate tensile test and electrochemical measurements. The results show that in comparison with the test in ASW, the charge transfer resistance of A100 steel beneath TEL is significantly reduced, correspondingly, the steel corrosion is significantly promoted, and the deposition of corrosion products is more obvious. Due to the existence of TEL, the oxygen reduction process and the deposition of corrosion products was all promoted. Meanwhile, the corrosion process under the dynamic TEL was stimulated due to the presence of reduction reaction of the Fe3+ within the corrosion products accompanied with the efficient dissolved oxygen, which then resulted in the occurrence of obvious uniform corrosion beneath the corrosion products. Similarly, A100 steel is more sensitive to stress corrosion cracking (SCC), when the test steel is covered with TEL, because the accelerating corrosion process may lead to the decreases of the effective bearing cross-sectional area of A100 steel. At the same time, the acidification process beneath the corrosion product layer promotes the hydrogen precipitation reaction and accelerates the SCC reaction process. It follows that the significant increase of the sensitivity of SCC for A100 steel may be ascribed to both the strength loss and elongation loss during the SCC testing in TEL environment.
|
Received: 01 December 2022
32134.14.1005.4537.2022.375
|
|
Fund: Equipment Advance Research Field Fund(80922010601);Key Research and Development Program of Shandong Province(2020CXGC010305) |
Corresponding Authors:
CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn
|
1 |
Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad [J]. J. Ordnance Equip. Eng., 2021, 42(7): 274
|
|
牛艳娥, 赵芃沛, 李宁 等. 国内外超高强度钢的研究现状及应用 [J]. 兵器装备工程学报, 2021, 42(7): 274
|
2 |
Zhao B, Xu G X, He F, et al. Present status and prospect of Ultra High strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1
|
|
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1
|
3 |
Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
doi: 10.1016/j.stam.2007.08.010
|
4 |
Feng L M, Shen H Q, Zhu Y J, et al. Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres [J]. Sci. Rep., 2017, 7: 41260
doi: 10.1038/srep41260
pmid: 28120906
|
5 |
Zhang X, Zhang J X, Chen Q M, et al. Effect of direct current electric field intensity and electrolyte layer thickness on oxygen reduction in simulated atmospheric environment [J]. Corros. Sci., 2019, 148: 206
doi: 10.1016/j.corsci.2018.12.013
|
6 |
Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504
|
|
赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504
doi: 10.11902/1005.4537.2019.032
|
7 |
Huang H L, Bu F R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer [J]. Corros. Eng. Sci. Technol., 2019, 54: 257
doi: 10.1080/1478422X.2019.1576351
|
8 |
Huang H L, Bu F R, Tian J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer [J]. J. Electron. Mater., 2017, 46: 6936
doi: 10.1007/s11664-017-5727-y
|
9 |
Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624
doi: 10.1016/j.corsci.2010.07.009
|
10 |
Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
|
11 |
Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046
|
12 |
Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2003, 34A: 327
|
13 |
Zhang T, Chen C M, Shao Y W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921
doi: 10.1016/j.electacta.2008.05.074
|
14 |
Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
|
15 |
Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
doi: 10.1016/j.conbuildmat.2019.117903
|
16 |
Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
|
17 |
Zhao Q Y, Fan Y, Fan E D, et al. Influence factors and corrosion resistance criterion of low-alloy structural steel [J]. Chin. J. Eng., 2021, 43: 255
|
|
赵起越, 范 益, 范恩点 等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据 [J]. 工程科学学报, 2021, 43: 255
|
18 |
Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Sci. Eng., 2012, (1): 42
|
|
于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
|
19 |
Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
|
|
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
|
20 |
Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
|
|
孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
doi: 10.11902/1005.4537.2020.172
|
21 |
Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
|
|
艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
doi: 10.11902/1005.4537.2019.282
|
22 |
Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726
doi: 10.1007/s11771-012-1333-6
|
23 |
Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
doi: 10.1016/j.corsci.2006.02.011
|
24 |
Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
doi: 10.1016/j.corsci.2022.110490
|
25 |
Shao X F, Cao B, Ce L X, et al. Relations between hydrogen-induced cracking and anode dissolution of pipeline steel X70 in near-neutral environment [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 76
|
|
邵绪分, 曹 备, 车立新 等. X70管线钢近中性环境氢致开裂与阳极溶解的关系 [J]. 中国腐蚀与防护学报, 2008, 28: 76
|
26 |
Larignon C, Alexis J, Andrieu E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media [J]. Corros. Sci., 2013, 69: 211
doi: 10.1016/j.corsci.2012.12.005
|
27 |
Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci., 2005, 47: 1545
doi: 10.1016/j.corsci.2004.07.044
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|