Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1049-1056    DOI: 10.11902/1005.4537.2022.298
Current Issue | Archive | Adv Search |
Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment
ZHOU Hao1, YOU Shijie2, WANG Shengli2()
1.Conservation Center, Shanghai Museum, Shanghai 200231, China
2.State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
Download:  HTML  PDF(4596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon dioxide (CO2) is a gaseous pollutant found in museums that can seriously damage the original appearance of copper artifacts through local acidification and corrosion. Aiming to simulate the CO2 induced corrosion of the real copper artifacts, a quartz-crystal microbalance (QCM) in conjunction with corrosion products analysis techniques is used to reveal the initial corrosion behavior and regularities of Cu in the CO2 containing environment. Furthermore, vapor-phase corrosion inhibitors (VCI) compounded with benzotriazole (BTA) and L-cysteine (CYS) were specifically formulated to improve the anti-corrosion ability of Cu. In this work, we investigated the anticorrosive mechanism of VCI on Cu by means of electrochemical impedance spectroscopy (EIS) technology and density functional theory (DFT). The results demonstrated that with the increase of CO2 concentration and relative humidity content of the environment, the Cu corrosion was accelerated, and the initial corrosion products consist mainly of Cu2O, CuO and CuCO3∙Cu(OH)2 after exposure to CO2 environment. BTA and CYS have significant synergistic anti-corrosion performance for Cu. When the compound radio of BTA to CYS is 4∶1, the highest corrosion inhibition efficiency is 86.2%. Which may be ascribed to that the CYS molecular with relatively smaller size can fully fill the defects of the BTA film, thus causing a greater densification of the anti-corrosion film.

Key words:  copper relics      CO2 atmosphere environment      corrosion mechanism      quartz crystal microbalance      vapor corrosion inhibitor     
Received:  26 September 2022      32134.14.1005.4537.2022.298
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51671117)
Corresponding Authors:  WANG Shengli, E-mail: tckitten@163.com   

Cite this article: 

ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1049-1056.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.298     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1049

Fig.1  Copper-coated quartz crystal
Fig.2  Frequency and mass (a), corrosion rate (b) vs time curves of copper-coated quartz crystal (T=25 °C, RH=90%, CCO2=3.6 mg·L-1)
Fig.3  Frequency (a, c) and corrosion rate (b, d) vs time curves of copper-coated quartz crystals under different CO2 concentrations (a, b) and RH (c, d)
Fig.4  XPS spectra of copper-coated quartz crystals under different exposure conditions: (a) XPS survey, (b) Cu 2p
Fig.5  Nyquist plot of Cu with different proportion of BTA-CYS (a) and equivalent circuit without (b) and with (c) VCI
Inhibitor

Rs

Ω·cm2

Rct

Ω·cm2

Cdl

μF·cm-2

Rfilm

Ω·cm2

Cfilm

μF·cm-2

Zw

Ω·cm2

Rt

Ω·cm2

ηS
Blank3.8274.815.96--0.000474.8--
BTA3.67152.16.0918.11.53-170.256.1%-

BTA∶CYS

(4∶1)

3.41482.61.2159.50.19-542.186.2%1.9

BTA∶CYS

(3∶2)

3.21354.92.1033.60.28-388.580.7%1.4

BTA∶CYS

(1∶1)

2.872083.4125.60.75-233.667.9%0.8

BTA∶CYS

(1∶4)

3.67127.46.4114.41.49-141.847.3%0.5
CYS3.69109.17.8013.32.66-122.438.9%-
Table 1  EIS parameters for copper with different proportion of BTA-CYS
Fig.6  Optimized geometries (a, d) and distributions of HOMO (b, e), LUMO (c, f) orbitals of BTA (a-c) and CYS (d-f)
CompoundELUMO / eVEHOMO / eVΔE / eV
BTA-0.045-0.2430.198
CYS-0.013-0.2410.228
Table 2  Quantum chemical and molecular dynamics parameters derived for BTA and CYS molecules calculated with DFT method
Fig.7  Corrosion inhibition mechanism of BTA-CYS on copper: (a) low CYS concentration, (b) high CYS concentration
1 Yi C X, Zhu B F, Chen Y, et al. Adsorption and protective behavior of BTAH on the initial atmospheric corrosion process of copper under thin film of chloride solutions [J]. Sci. Rep., 2018, 8: 5606
doi: 10.1038/s41598-018-23927-w pmid: 29618834
2 Petiti C, Toniolo L, Gulotta D, et al. Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment [J]. Environ. Sci. Pollut. Res., 2020, 27: 13081
doi: 10.1007/s11356-020-07814-4
3 Thorhallsson A I, Csáki I, Geambazu L E, et al. Effect of alloying ratios and Cu-addition on corrosion behaviour of CoCrFeNiMo high-entropy alloys in superheated steam containing CO2, H2S and HCl [J]. Corros. Sci., 2021, 178: 109083
doi: 10.1016/j.corsci.2020.109083
4 Chen Z Y, Persson D, Nazarov A, et al. In situ studies of the effect of CO2 on the initial NaCl-induced atmospheric corrosion of copper [J]. J. Electrochem. Soc., 2005, 152: B342
doi: 10.1149/1.1984448
5 Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment [J]. Corros. Sci., 2018, 137: 163
doi: 10.1016/j.corsci.2018.03.042
6 Azmi N S M, Mohamed D, Tadza M Y M. Effects of various relative humidity conditions on copper corrosion behavior in bentonite [J]. Mater. Today: Proc., 2022, 48: 801
7 Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: a short view [J]. Chem. Eng. Commun., 2016, 203: 1145
doi: 10.1080/00986445.2016.1172485
8 Salvadori B, Cagnini A, Galeotti M, et al. Traditional and innovative protective coatings for outdoor bronze: application and performance comparison [J]. J. Appl. Polym. Sci., 2018, 135: 46011
doi: 10.1002/app.46011
9 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
doi: 10.1016/j.jelechem.2013.02.007
10 Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding [J]. Corros. Sci., 2015, 98: 457
doi: 10.1016/j.corsci.2015.05.041
11 Javidparvar A A, Naderi R, Ramezanzadeh B. L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement [J]. J. Hazard. Mater., 2020, 389: 122135
doi: 10.1016/j.jhazmat.2020.122135
12 Zhang Q H, Li Y Y, Zhu G Y, et al. In-depth insight into the synergistic inhibition mechanism of S-benzyl-L-cysteine and thiourea on the corrosion of carbon steel in the CO2-saturated oilfield produced water [J]. Corros. Sci., 2021, 192: 109807
doi: 10.1016/j.corsci.2021.109807
13 Wan S, Ma X Z, Miao C H, et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance [J]. Corros. Sci., 2020, 170: 108692
doi: 10.1016/j.corsci.2020.108692
14 Dehri I, Yazici B, Erbil M, et al. The effects of SO2 and NH3 on the atmospheric corrosion of galvanized iron sheet [J]. Corros. Sci., 1994, 36: 2181
doi: 10.1016/0010-938X(94)90016-7
15 Tian H, Cheng Y F, Li W, et al. Triazolyl-acylhydrazone derivatives as novel inhibitors for copper corrosion in chloride solutions [J]. Corros. Sci., 2015, 100: 341
doi: 10.1016/j.corsci.2015.08.022
16 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
doi: 10.11902/1005.4537.2015.022
17 Zhu Y H, Zhuang J, Zeng X G. Mechanism of (NH4)S2O8 to enhance the anti-corrosion performance of Mo-Ce inhibitor on X80 steel in acid solution [J]. Appl. Surf. Sci., 2014, 313: 31
doi: 10.1016/j.apsusc.2014.05.117
18 Rodahl M, Kasemo B. On the measurement of thin liquid overlayers with the quartz-crystal microbalance [J]. Sens. Actuator., 1996, 54A: 448
19 Liu T, Chen S G, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater [J]. Electrochim. Acta, 2007, 52: 8003
doi: 10.1016/j.electacta.2007.06.072
20 Wiesinger R, Martina I, Kleber C, et al. Influence of relative humidity and ozone on atmospheric silver corrosion [J]. Corros. Sci., 2013, 77: 69
doi: 10.1016/j.corsci.2013.07.028
21 Kozlica D K, Kokalj A, Milošev I. Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium-An electrochemical, XPS, FTIR and DFT study [J]. Corros. Sci., 2021, 182: 109082
doi: 10.1016/j.corsci.2020.109082
22 Hsu Y K, Chen Y C, Lin Y G. Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes [J]. J. Electroanal. Chem., 2012, 673: 43
doi: 10.1016/j.jelechem.2012.03.019
23 Huang J Y, Yang S. Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser [J]. Appl. Surf. Sci., 2022, 579: 152223
doi: 10.1016/j.apsusc.2021.152223
24 Pantano D, Neubauer N, Navratilova J, et al. Transformations of nanoenabled copper formulations govern release, antifungal effectiveness, and sustainability throughout the wood protection lifecycle [J]. Environ. Sci. Technol., 2018, 52: 1128
doi: 10.1021/acs.est.7b04130
25 Song P, Shen S, Li C C, et al. Insight in layer-by-layer assembly of cysteamine andL-cysteine on the copper surface by electrochemistry and Raman spectroscopy [J]. Appl. Surf. Sci., 2015, 328: 86
doi: 10.1016/j.apsusc.2014.12.015
26 Zhou H, Wang S L, Liu X F, et al. Hybrid corrosion inhibitor for anti-corrosion and protection of bronze relics [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 517
周 浩, 王胜利, 刘雪峰 等. 新型复合缓蚀剂对青铜文物的防腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 517
27 Shukla S K, Quraishi M A. The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution [J]. Corros. Sci., 2010, 52: 314
doi: 10.1016/j.corsci.2009.09.017
28 Venkatesh R P, Cho B J, Ramanathan S, et al. Electrochemical impedance spectroscopy (EIS) analysis of BTA removal by TMAH during post Cu CMP cleaning process [J]. J. Electrochem. Soc., 2012, 159: C447
doi: 10.1149/2.014211jes
29 Chidiebere M A, Oguzie E E, Liu L, et al. Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives [J]. Ind. Eng. Chem. Res., 2014, 53: 7670
doi: 10.1021/ie404382v
30 El Adnani Z, Mcharfi M, Sfaira M, et al. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid [J]. Corros. Sci., 2013, 68: 223
doi: 10.1016/j.corsci.2012.11.020
31 Zhu Y Q, Sun Q Q, Wang Y, et al. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and l-cysteine corrosion inhibitors [J]. Corros. Sci., 2021, 185: 109414
doi: 10.1016/j.corsci.2021.109414
32 Antonijević M M, Milić S M, Petrović M B. Films formed on copper surface in chloride media in the presence of azoles [J]. Corros. Sci., 2009, 51: 1228
doi: 10.1016/j.corsci.2009.03.026
[1] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[2] LIU Mingming, YANG Xiaobing, CHEN Xiaoqi, WANG Zhengbin, ZHENG Yugui, HE Chunlin. Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[3] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[4] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[5] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[6] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[7] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[8] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[9] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[10] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[11] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[13] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[15] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
No Suggested Reading articles found!