Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1057-1063    DOI: 10.11902/1005.4537.2022.303
Current Issue | Archive | Adv Search |
Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water
CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang(), LIU Yutong
National Thermal Power Engineering & Technology Research Center, North China Electric Power University, Beijing 102206, China
Download:  HTML  PDF(4795KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion fatigue crack growth rate (CFCGR) of nickel base alloy 617, a candidate material for advanced ultra-supercritical unit, in 650 °C/25 MPa supercritical water was studied. The constant stress intensity factor (K) method is used for dynamic loading, and the DC potential drop (DCPD) method is used to measure the crack length in real time. The effect of maximum stress intensity factors (Kmax=30, 32, 36, 40 MPa·m1/2), stress ratios (R=0.3, 0.4, 0.5, 0.6), loading frequencies (f=0.01, 1 Hz) and waveforms (sine wave, triangular wave and trapezoidal wave) on CFCGR were investigated. The results show that the CFCGR increases monotonously with the increase of Kmax, and the relationship between them is approximately linear. CFCGR increases with the decrease of R. With the increase of loading frequency, the CFCGR decreases. Under the two frequencies (f=0.01, 1 Hz), the sine wave and triangular wave loading have no obvious effect on the CFCGR. Trapezoidal waves result in larger CFCGR than continuous cycles without hold time.

Key words:  nickel base alloy      corrosion fatigue      crack growth rate      maximum stress intensity factor      stress ratio      waveform      frequency     
Received:  01 October 2022      32134.14.1005.4537.2022.303
ZTFLH:  TM621  
Fund: National Natural Science Foundation of China(52071140)
Corresponding Authors:  ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn   

Cite this article: 

CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1057-1063.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.303     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1057

Fig.1  Low (a) and high (b) magnification images of metallographic structure of Inconel 617
Fig.2  Dimensions of 0.5T-CT specimen (mm)
Test stepKmaxMPa·m1/2RWave formFrequency Hz
S1300.3Sine wave0.1
S2300.6Sine wave0.01
S3320.6Sine wave0.01
S4360.6Sine wave0.01
S5400.6Sine wave0.01
S6400.5Sine wave0.01
S7400.4Sine wave0.01
S8400.3Sine wave0.01
Table 1  Experimental conditions for the samples of CF-1 group in supercritical water
Test stepKmaxMPa·m1/2RWave formFrequency Hz
S1300.3Sine wave1
S2320.6Sine wave1
S3320.6Triangular wave1
S4320.6Sine wave0.01
S5320.6Triangular wave0.01
S6320.6Trapezoidal wave

0.01(0.5 s+99 s

+0.5 s)

Table 2  Experimental conditions for the samples of CF-2 group in supercritical water
Fig.3  Crack length vs. time curves of CF-1 (a) and CF-2 (b) in supercritical water
Fig.4  Variation of CFCGR with Kmax
Fig.5  CFCGR vs. R curve (a) and double logarithmic fitting curve (b)
Fig.6  Comparison of CFCGR under the conditions of two waveforms and frequencies
Fig.7  CFCGR of Inconel 617 under two holding time conditions
1 Liu H W. An interpretation of the targets of carbon peaking and carbon neutrality with their Implementation: from the perspective of the international law [J]. J. Peking Univ. (Philos. Soc. Sci.), 2022, 59(2): 13
柳华文. “双碳”目标及其实施的国际法解读 [J]. 北京大学学报(哲学社会科学版), 2022, 59(2): 13
2 Zhu F H, Wang Y S, Xu Z, et al. Research on the development path of carbon peak and carbon neutrality in China's Power Industry [J]. Electr. Power Technol. Environ. Prot., 2021, 37(3): 9
朱法华, 王玉山, 徐 振 等. 中国电力行业碳达峰、碳中和的发展路径研究 [J]. 电力科技与环保, 2021, 37(3): 9
3 Lu S Z. Discussion on the future trend of coal-fired power plants in carbon neutral environment [J]. Sci. Technol. Econom. Market, 2021, (5): 139
路澍柘. 浅谈在碳中和环境下的燃煤电厂的未来趋势 [J]. 科技经济市场, 2021, (5): 139
4 Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality [J]. J. China Coal Soc., 2021, 46: 2197
谢和平, 任世华, 谢亚辰 等. 碳中和目标下煤炭行业发展机遇 [J]. 煤炭学报, 2021, 46: 2197
5 Wang L L. Stage and opportunity of coal under the goal of "double carbon" [N]. China Coal News, 2021-07-15(03)
王丽丽. “双碳”目标下煤炭的舞台与机遇 [N]. 中国煤炭报, 2021-07-15(03)
6 Chi C Y, Yu H Y, Xie X S. Critical high temperature materials for 700 ℃ A-USC power plants [J]. World Iron Steel, 2013, 13(2): 42
迟成宇, 于鸿垚, 谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料 [J]. 世界钢铁, 2013, 13(2): 42
7 Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Gener., 2017, 46(9): 1
刘入维, 肖 平, 钟 犁 等. 700℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
8 Wang D L. Research and development status and suggestions of 700 ℃ high efficiency ultra supercritical power generation technology [J]. Sci. Technol. Vision, 2014, (36): 330
王东雷. 700 ℃高效超超临界发电技术的研发现状及建议 [J]. 科技视界, 2014, (36): 330
9 Mao J X. Latest Development of high-temperature metallic materials in 700 ℃ ultra-supercritical units [J]. Electr. Power Constr., 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
毛健雄. 700 ℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
10 Wang T J, Fan H, Zhang B Q, et al. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃ [J]. Dongfang Turb., 2012, (2): 46
王天剑, 范 华, 张邦强 等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材 [J]. 东方汽轮机, 2012, (2): 46
11 Wang T J, Fan H, Zhang B Q, et al. Selection of nickel base superalloy for key components of 700 ℃ advanced ultra supercritical steam turbine [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 7
王天剑, 范 华, 张邦强 等. 700 ℃先进超超临界汽轮机关键部件用镍基高温合金选材 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 7
12 Peng J Q, Sun F M, Wang M Y. Discussion on materials for high and intermediate pressure rotors of ultra supercritical steam turbines above 700 ℃ [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 10
彭建强, 孙福民, 王梅英. 700 ℃以上等级超超临界汽轮机高中压转子用材探讨 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 10
13 Klöwer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 °C power plants [J]. Procedia Eng., 2013, 55: 226
doi: 10.1016/j.proeng.2013.03.247
14 Yang H C, Lin F S, Xie X S, et al. R&D progress of 700 ℃ power generation technology and alloy 617 in Europe [J]. Power Equip., 2012, 26: 355
杨华春, 林富生, 谢锡善 等. 欧洲700 ℃发电机组研发及617合金研究进展 [J]. 发电设备, 2012, 26: 355
15 Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700 ℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30: 841
郭 岩, 王彩侠, 李太江 等. 700 ℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30: 841
16 Guo Y, Wang B H, Hou S F, et al. Aging precipitates of alloy 617 mod used for 700 ℃ ultra supercritical unit [J]. Proc. CSEE, 2014, 34: 2314
郭 岩, 王博涵, 侯淑芳 等. 700 ℃超超临界机组用Alloy 617 mod时效析出相 [J]. 中国电机工程学报, 2014, 34: 2314
17 Mankins W L, Hosier J C, Bassford T H. Microstructure and phase stability of INCONEL alloy 617 [J]. Metall. Trans., 1974, 5B: 2579
18 Jiang H, Dong J X, Zhang M C, et al. A review of the study on alloy 617 for 700 ℃ultra supercritical power plants [J]. World Iron Steel, 2014, 14(3): 26
江 河, 董建新, 张麦仓 等. 700 ℃超超临界用锅炉管材617合金研究进展 [J]. 世界钢铁, 2014, 14(3): 26
19 Kaoumi D, Hrutkay K. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617 [J]. J. Nucl. Mater., 2014, 454: 265
doi: 10.1016/j.jnucmat.2014.08.003
20 Khan H I. Environmentally assisted cracking behavior of candidate materials in ultra-supercritical power plants [D]. Beijing: North China Electric Power University (Beijing), 2019
Khan H I. 超超临界电站候选材料环境加速断裂行为 [D]. 北京: 华北电力大学 (北京), 2019
21 Li Y Q, Zhao L Y. Impact of stress intensity factor on mechanical state at the tip of stress corrosion cracking in nickel-based alloys [J]. Corros. Prot., 2016, 37: 128
李永强, 赵凌燕. 应力强度因子对镍基合金应力腐蚀开裂裂尖力学特性的影响 [J]. 腐蚀与防护, 2016, 37: 128
22 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
23 Adedipe O, Brennan F, Kolios A. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 395
doi: 10.1111/ffe.v39.4
24 Liang Y M, Huang Y, Wu Z M. Influence of loading waveforms on corrosion fatigue crack growth for D36 steel [J]. Corros. Prot., 2016, 37: 289
梁永梅, 黄 一, 吴智敏. 加载波形对D36钢腐蚀疲劳裂纹扩展速率的影响 [J]. 腐蚀与防护, 2016, 37: 289
25 Xu W Q. Corrosion fatigue behavior of Inconel 617 alloy for boiler in supercritical water environment [D]. Beijing: North China Electric Power University (Beijing), 2018
徐炜乔. 超临界水环境中锅炉镍基617合金腐蚀疲劳行为研究 [D]. 北京: 华北电力大学(北京), 2018
26 Khan H I, Zhang N Q, Xu W Q, et al. Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water [J]. Int. J. Fatigue, 2019, 118: 22
doi: 10.1016/j.ijfatigue.2018.08.035
27 Pineau A, Antolovich S D. High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation [J]. Eng. Fail. Anal., 2009, 16: 2668
doi: 10.1016/j.engfailanal.2009.01.010
28 Clavel M, Pineau A. Frequency and wave-form effects on the fatigue crack growth behavior of alloy 718 at 298 K and 823 K [J]. Metall. Trans., 1978, 9A: 471
29 Dahal J, Maciejewski K, Ghonem H. Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy [J]. Int. J. Fatigue, 2013, 57: 93
doi: 10.1016/j.ijfatigue.2012.12.009
30 Rodriguez P, Mannan S L. High temperature low cycle fatigue [J]. Sadhana, 1995, 20: 123
doi: 10.1007/BF02747287
31 Dalby S, Tong J. Crack growth in a new nickel-based superalloy at elevated temperature - Part I - Effects of loading waveform and frequency on crack growth [J]. J. Mater. Sci., 2005, 40: 1217
doi: 10.1007/s10853-005-6940-2
32 Tong J, Dalby S, Byrne J. Crack growth in a new nickel-based superalloy at elevated temperature-Part III-Characterisation [J]. J. Mater. Sci., 2005, 40: 1237
doi: 10.1007/s10853-005-6942-0
33 Skelton R P, Gandy D. Creep-fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms [J]. Mater. High Temp., 2008, 25: 27
doi: 10.3184/096034007X300494
34 Totemeier T C, Tian H B. Creep-fatigue-environment interactions in INCONEL 617 [J]. Mater. Sci. Eng., 2007, 468-470A: 81
35 Cabet C, Carroll L, Wright R. Low cycle fatigue and creep-fatigue behavior of alloy 617 at high temperature [J]. J. Press. Vessel Technol., 2013, 135: 061401
[1] LIU Dong, LIU Jing, HUANG Feng, DU Liying. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[2] WANG Qishan, LI Hongjin, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Loading Modes on Initiation and Propagation of Corrosion Fatigue Cracks of X65 Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[3] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[4] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[5] ZHANG Chenyang, LIU Huicong, HAN Dongxiao, ZHU Liqun, LI Weiping. Preparation of Micron SiC/Ni-Co-P Composite Coatings and Influencing Factors[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[6] SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[7] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[8] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[9] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[11] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[14] ZHOU Nianguang, ZHA Fanglin, FENG Bing, HE Tiexiang. Application of Electrochemical Frequency Modulation for Study of Q235 Steel Corrosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(5): 445-450.
[15] ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, WANG Liye. Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
No Suggested Reading articles found!