Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 251-260    DOI: 10.11902/1005.4537.2022.076
Current Issue | Archive | Adv Search |
Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas
HUANG Jiahe1, YUAN Xi2, CHEN Wen2, YAN Wenjing2, JIN Zhengyu1, LIU Haixian1, LIU Hongfang3, LIU Hongwei1()
1.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2.Research Institute of Natural Gas Technology, Southwest Oil & Gasfield Company, China National Petroleum Corporation, Chengdu 610299, China
3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(29648KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Temperature is one of the key factors influencing the corrosion of oil pipeline steel in the shale gas environment. This work studied the effect of temperature on the corrosion behavior of pipeline steels N80 and TP125V in an artificial CO2-saturated fracturing fluid of shale gas by means of mass loss measurement, electrochemical measurement, scanning electron microscopy, X-ray diffractometer and 3D microscope. Results indicate that among others, the corrosion rates of steels N80 and TP125V reached the highest at 100 ℃ with values of (0.169±0.014) and (0.198±0.007) mm/a, respectively. Correspondingly, the highest localized corrosion rates were 1.13 and 2.47 mm/a, while the densities of corrosion pits were 2.0×103 and 2.6×103 pits/cm2, respectively. In conclusion, the corrosion rates of steels N80 and TP125V increased firstly with the increasing temperature, further reached the maximum at 100 ℃, and then decreased gradually. The corrosion rates of N80 steel were higher than those of TP125V steel at 60 and 120 ℃ respectively, but the corrosion rates of the two steels are reversed at 90, 100, and 100 ℃. The temperature could also influence the structure and components of the formed corrosion products according to the surface analysis results.

Key words:  corrosion      shale gas      N80 steel      TP125V steel      temperature      localized corrosion     
Received:  16 March 2022      32134.14.1005.4537.2022.076
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51901253);Guangdong Basic and Applied Basic Research Foundation(2019A1515011135);Fundamental Research Funds for the Central Universities(19lgzd18);Open Project Program of Hubei Key Laboratory of Materials Chemistry and Service Failure(2020MCF02)
About author:  LIU Hongwei, E-mail: liuhw35@mail.sysu.edu.cn

Cite this article: 

HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 251-260.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.076     OR     https://www.jcscp.org/EN/Y2023/V43/I2/251

Fig.1  Calculated corrosion rates of N80 steel (a) and TP125V steel (b) based on mass losses after immersion in the CO2-saturated solution for 14 d
Fig.2  SEM images (a1-e1, a2-e2) and corresponding EDS spectra (a3-e3) of N80 steel after immersion in the CO2-saturated solution for 14 d at 60 ℃ (a), 90 ℃ (b), 100 ℃ (c), 110 ℃ (d) and 120 ℃ (e)
T / oCCOCaFeSiMnCuMg
608.0942.0542.886.63---------0.35
9010.9243.290.3325.811.340.46------
1006.4841.150.2450.710.490.92------
1106.4529.520.5154.46---0.726.03---
1202.9831.18---65.34---0.50------
Table 1  EDS analysis results of corrosion products formed on N80 steel after 14 d immersion at different temperature
Fig.3  SEM images (a1-e1, a2-e2) and corresponding EDS spectra (a3-e3) of TP125V steel after immersion in the CO2-saturated solution for 14 d at 60 ℃ (a), 90 ℃ (b), 100 ℃ (c), 110 ℃ (d) and 120 ℃ (e)
T / oCCOCaFeSiMnCuBaMgZrCr
609.0230.330.5554.150.970.603.31------0.80---
909.2324.415.6953.542.360.351.27---1.33---0.84
1007.6434.371.0653.060.790.50------0.351.16---
1105.1313.931.1866.660.360.44---5.882.121.001.08
1205.8241.45---51.85---0.24------------0.23
Table 2  EDS analysis results of corrosion products formed on TP125V steel after 14 d immersion at different temperatures
Fig.4  XRD patterns of N80 steel (a) and TP125V steel (b) after 14 d immersion in the CO2-saturated solution at different temperatures
Fig.5  Surface morphologies (a1-e1, a2-e2) and 3D surface morphologies (a3-e3), depth of corrosion pits (a4-e4) of N80 steel after removing corrosion products formed during 14 d immersion in the CO2-saturated solution at 60 ℃ (a), 90 ℃ (b), 100 ℃ (c), 110 ℃ (d) and 120 ℃ (e)
Fig.6  Surface morphologies (a1-e1, a2-e2) and 3D surface morphologies (a3-e3), depth of corrosion pits (b4-e4) of TP125V steel after removing corrosion products formed during 14 d immersion in the CO2-saturated solution at 60 ℃ (a), 90 ℃ (b), 100 ℃ (c), 110 ℃ (d) and 120 ℃ (e)
Fig.7  Localized corrosion rates (a, c) and pit densities (b, d) obtained from 3D surface morphologies of N80 steel (a, b) and TP125V steel (c, d) after removing corrosion products
Fig.8  Polarization curves of TP125V steel after 14 d immersion in the CO2-saturated solution at different temperatures.
TBaV·dec-1BcV·dec-1Ecorr vs Ag/AgClVIcorrA·cm-2Corrosion rate mm·a-1
600.316-0.145-0.6071.32×10-70.002
900.246-0.085-0.6154.04×10-60.047
1000.130-0.179-0.7844.63×10-50.544
1100.173-0.135-0.6166.74×10-70.008
1200.218-0.068-0.4263.51×10-70.004
Table 3  Tafel fitted results of the polarization curves of TP125V steel at different temperatures
[1] Gao S K, Dong D Z, Tao K, et al. Experiences and lessons learned from China's shale gas development: 2005-2019 [J]. J. Nat. Gas Sci. Eng., 2021, 85: 103648
doi: 10.1016/j.jngse.2020.103648
[2] Xiong Q, Hu J Y, Gu C R, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production [J]. Appl. Surf. Sci., 2020, 523: 146534
doi: 10.1016/j.apsusc.2020.146534
[3] Liu Q P, Feng S Q, Li Y C, et al. Analysis of corrosion reasons for gathering pipelines in shale gas fields [J]. Corros. Prot., 2020, 41(10): 69
(刘乔平, 冯思乔, 李迎超 等. 页岩气田集输管线的腐蚀原因分析 [J]. 腐蚀与防护, 2020, 41(10): 69)
[4] Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
(赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535)
[5] Wu G Y, Zhao W W, Wang Y R, et al. Analysis on corrosion-induced failure of shale gas gathering pipelines in the southern Sichuan Basin of China [J]. Eng. Fail. Anal., 2021, 130: 105796
doi: 10.1016/j.engfailanal.2021.105796
[6] Lin Y H, Zhu D J, Zeng D Z, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions [J]. Corros. Sci., 2013, 74: 13
doi: 10.1016/j.corsci.2013.03.018
[7] Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Design, 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
[8] Liu H W, Cheng Y F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corros. Sci., 2018, 133: 178
doi: 10.1016/j.corsci.2018.01.029
[9] Qin M, He G X, Liao K X, et al. CO2-O2-SRB-Cl- multifactor synergistic corrosion in shale gas pipelines at a low liquid flow rate [J]. J. Mater. Eng. Perform., 2022, 31: 4820
doi: 10.1007/s11665-022-06580-3
[10] Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
doi: 10.1016/j.corsci.2019.06.016
[11] Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
(张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143)
[12] Gao M, Pang X, Gao K. The growth mechanism of CO2 corrosion product films [J]. Corros. Sci., 2011, 53: 557
doi: 10.1016/j.corsci.2010.09.060
[13] Wei Z L, Luo F J, Zhao J M. Study on relation between temperature and corrosion of tubing in xushen gas field [J]. Corros. Prot. Petrochem. Ind., 2015, 32(1): 5
(魏振禄, 罗福建, 赵景茂. 徐深气田油管腐蚀与温度之间的关系研究 [J]. 石油化工腐蚀与防护, 2015, 32(1): 5)
[14] Ge R, Zhang J. Corrosion behavior of N80 tubular steel in simulated oilfield CO2 environment [J]. Welded Pipe Tube, 2019, 42(8): 1
(葛睿, 张钧. N80油管钢在模拟油田CO2环境中的腐蚀行为 [J]. 焊管, 2019, 42(8): 1)
[15] Wang S J. Control value of corrosion rate for tubing and casing of injection-production well in CO2 flooding oilfield [J]. Corros. Prot., 2015, 36: 218
(王世杰. CO2驱油田注采井油套管腐蚀速率控制值 [J]. 腐蚀与防护, 2015, 36: 218)
[16] Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.3057
[17] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
[18] Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
(白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60)
[19] Eliyan F F, Alfantazi A. On the theory of CO2 corrosion reactions-Investigating their interrelation with the corrosion products and API-X100 steel microstructure [J]. Corros. Sci., 2014, 85: 380
doi: 10.1016/j.corsci.2014.04.055
[20] Hua Y, Shamsa A, Barker R, et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments [J]. Appl. Surf. Sci., 2018, 455: 667
doi: 10.1016/j.apsusc.2018.05.140
[21] Shamsa A, Barker R, Hua Y, et al. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments [J]. Corros. Sci., 2021, 185: 109423
doi: 10.1016/j.corsci.2021.109423
[22] Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
(白海涛, 杨敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295)
[23] Zhu Z J, Teevens P J, Xue H B, et al. Numerical simulation and experimental verification of pitting corrosion propagation in sweet pipeline service [J]. J. Pipeline Sci. Eng., 2022, 2: 78
doi: 10.1016/j.jpse.2022.01.001
[24] Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
(王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
[1] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[4] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[5] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[6] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[7] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[8] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[9] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[10] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[11] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[12] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[13] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[14] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[15] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
No Suggested Reading articles found!