Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 135-142    DOI: 10.11902/1005.4537.2022.006
Current Issue | Archive | Adv Search |
Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys
LV Xin1, DENG Kunkun1,2(), WANG Cuiju1, NIE Kaibo1, SHI Quanxin1, LIANG Wei1,2
1.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(17910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The sub-micron SiCp, micron SiCp and dual-scale SiCp reinforced AZ91 Mg-alloy based composites, namely composites (S1), (M10), and (S1+M9) respectively, were prepared by semi-solid stirring casting method. They were then characterized by means of optical microscope, scanning electron microscope, X-ray diffraction, immersion method, and electrochemical test, etc in terms of the effect of the particle size of SiCp on the microstructure and corrosion properties of the as-cast AZ91 Mg-alloys. The results show that the addition of SiCp can refine significantly the semi-continuous network-like Mg17Al12 phase in the AZ91 Mg-alloy, which is attributed to the heterogeneous nucleation effect of SiCp on the Mg17Al12 phase. The Mg17Al12 phase can be precipitated as Mg17Al12 particles with core of sub-micron SiCp, and/or directly on the surface of micron SiCp. By comparing the two composites reinforced with the same volume fraction of SiCp, it can be found that the corrosion resistance of S1+M9 is significantly lower than that of M10, indicating that when the content of SiCp is constant, changing the size of SiCp from micron to sub-micron will reduce the corrosion resistance of the composites.

Key words:  AZ91 Mg-alloy      SiCp      microstructure      corrosion performance     
Received:  04 January 2022      32134.14.1005.4537.2022.006
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52001223);National Natural Science Foundation of China(51771128);National Natural Science Foundation of China(51771129)

Cite this article: 

LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 135-142.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.006     OR     https://www.jcscp.org/EN/Y2023/V43/I1/135

Fig.1  OM (a-d) and low magnification SEM (e-h) images of the AZ91 Mg-alloy (a, e), S1 (b, f), M10 (c, g) and S1+M9 (d, h)
Fig.2  XRD patterns of the materials: (a) 2θ range from 10° to 80°, (b) 2θ range from 30° to 40°
Fig.3  High magnification SEM images and EDS surface scans of the AZ91 Mg-alloy (a), S1 (b), M10 (c) and S1+M9 (d)
PositionsMgAlSiZnCaMn
A78.120.1---0.80.80.2
B64.79.125.80.30.1---
D25.23341.50.10.2---
E72.710.915.60.50.3---
Table 1  EDS analysis of the points in Fig.3 (atomic fraction / %)
Fig.4  Hydrogen evolution amount (a), hydrogen evolution rate (b) with immersion time and corrosion rate of different materials (c)
Fig.5  Impedance curves of different materials in 3.5%NaCl: (a) Nyquist plots; (b) Phase angle-frequency plots; (c) |Z|-frequency plots
MaterialsRs / Ω·cm2CPE1 / 10-6Sn ·Ω-1·cm-2n1Rct / Ω·cm2CPE2 / 10-5Sn ·Ω-1·cm2n2Rf / Ω·cm2RL / Ω·cm2L / HRp / Ω·cm2
S18.3229.5050.905518764.5250.8962153.8420.287.872029.8
AZ918.8437.6110.92471689412.60.250571.13.489×101032401760.1
M1010.248.0810.9254678.221.730.52120.01421.999.22678.2
S1+M914.728.7020.916387.3201.80.073887.671.686×10753.82475
Table 2  Fitted electrochemical parameters of impedance curves of different materials after immersion 0.5 h
MaterialsEcorr / Vβc / mV·dec-1Icorr / µA·cm-2
S1-1.471-97.22±1.352.24
AZ91-1.520-102.52±1.475.70
M10-1.491-170.45±0.3240.98
S1+M9-1.523-158.20±0.3058.04
Table 3  Fitting results of polarization curves in Fig.6
Fig.6  Polarization curves of different materials in 3.5%NaCl solution
Fig.7  Corroded surface morphology of unremoving corrosion products of the AZ91 Mg-alloy (a), S1 (b), M10 (c) and S1+M9 (d) after 10 min immersion; M10 (e) and S1+M9 (f) after 1 h immersion in 3.5%NaCl solution
Fig.8  Section corrosion morphology of the S1 (a, e), AZ91 Mg-alloy (b, f), M10 (c, g) and S1+M9 (d, h) immersed in 3.5%NaCl solution for 7 d after removing corrosion products
Fig.9  Schematic illustration of SiCp reinforced AZ91 Mg-alloy matrix composites with different sizes under the same volume fraction: (a) micron size, (b) submicron size
1 Wei Y H, Xu B S. Theory and Practice of Magnesium Alloy Corrosion Protection [M]. Beijing: Metallurgical Industry Press, 2007
卫英慧, 许并社. 镁合金腐蚀防护的理论与实践 [M]. 北京: 冶金工业出版社, 2007
2 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
3 Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
邵银华, 王金龙, 张伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
4 Sun X F, Wang C J, Deng K K, et al. Aging behavior of AZ91 matrix influenced by 5 μm SiCp: investigation on the microstructure and mechanical properties [J]. J. Alloy. Compd., 2017, 727: 1263
doi: 10.1016/j.jallcom.2017.08.198
5 Nie K B, Wang X J, Hu X S, et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration [J]. Mater. Sci. Eng., 2011, 528A: 5278
6 Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiC reinforced magnesium composites [J]. Corros. Sci., 2007, 49: 711
doi: 10.1016/j.corsci.2006.05.047
7 Zhang C Y, Zhang T, Shao Y W, et al. Corrosion behavior of a hot extruded magnesium alloy AZ91 based composite SiCP/AZ91 [J]. Corros. Sci. Prot. Technol., 2014, 26: 99
张春艳, 张涛, 邵亚薇 等. 热挤压态SiCp/AZ91镁基复合材料腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2014, 26: 99
8 Ganguly S, Mondal A K, Sarkar S, et al. Improved corrosion response of squeeze-cast SiC nanoparticles reinforced AZ91-2.0Ca-0.3Sb alloy [J]. Corros. Sci., 2020, 166: 108444
doi: 10.1016/j.corsci.2020.108444
9 Singla S, Kang A S, Sidhu T S. Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite [J]. Mater. Today Proc., 2020, 26: 3138
10 Deng K K, Wang X J, Wu Y W, et al. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite [J]. Mater. Sci. Eng., 2012, 543A: 158
11 Zhou S S, Deng K K, Li J C, et al. Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite [J]. Mater. Des., 2014, 63: 672
doi: 10.1016/j.matdes.2014.07.004
12 Wu P P, Deng K K, Nie K B, et al. Corrosion resistance of AZ91 Mg alloy modified by high-current pulsed electron beam [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 218
doi: 10.1007/s40195-018-0798-1
13 Ma X L, Prameela S E, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: a comparative study to conventional aging [J]. Acta Mater., 2019, 172: 185
doi: 10.1016/j.actamat.2019.04.046
14 Liu Y, Cheng W L, Liu Y H, et al. Effect of alloyed Ca on the microstructure and corrosion behavior of extruded Mg-Bi-Al-based alloys [J]. Mater. Charact., 2020, 163: 110292
doi: 10.1016/j.matchar.2020.110292
15 Zhu Y X, Song G L, Wu P P, et al. A burnished and Al-alloyed magnesium surface with improved mechanical and corrosion properties [J]. Corros. Sci., 2021, 184: 109395
doi: 10.1016/j.corsci.2021.109395
16 Hagihara K, Okubo M, Yamasaki M, et al. Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions [J]. Corros. Sci., 2016, 109: 68
doi: 10.1016/j.corsci.2016.03.019
17 Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions [J]. J. Magnes. Alloys, 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
18 Yin S Q, Duan W C, Liu W H, et al. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys [J]. Corros. Sci., 2020, 166: 108419
doi: 10.1016/j.corsci.2019.108419
19 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
20 Birbilis N, Cavanaugh M K, Sudholz A D, et al. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys [J]. Corros. Sci., 2011, 53: 168
doi: 10.1016/j.corsci.2010.09.013
21 Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
doi: 10.1016/j.corsci.2008.04.010
22 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[4] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[5] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[6] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[7] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[8] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[9] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[10] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[11] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[12] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[13] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[14] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[15] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
No Suggested Reading articles found!