Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 693-698    DOI: 10.11902/1005.4537.2021.188
Current Issue | Archive | Adv Search |
Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof
WANG Jiaqi1(), LI Li1, LIU Tingting2
1.City College of Science and Technology, Chongqing University, Chongqing 402167, China
2.School of Materials and Energy, Southwest University, Chongqing 400715, China
Download:  HTML  PDF(7400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of RE content and cold rolling plus annealing on the microstructure and corrosion resistance of Al-Mn-RE alloy were studied by means of metallographic microscope, scanning electron microscope and electrochemical workstation. The results show that the eutectic phases with different sizes and irregular shapes can be seen in Al-Mn-xRE alloys. With the addition of different RE content, the amount of Si containing eutectic increases, the long strip-like eutectic structure was refined and gradually transformed into spherical or short rod-like structure. When RE content reaches 0.25% or more, the eutectic structure begins to coarsen. With the increase of RE content, the corrosion potential and pore size of Al-Mn-xRE alloys increase, however, the corrosion potential of Al-Mn-0.18RE alloy shifts positively and then negatively, whilst the corrosion current density decreases first and then increases. In fact, the alloy with 0.18% RE presents the maximum corrosion resistance. The corrosion potential and pitting corrosion potential of the Al-Mn-0.18RE alloys subjected to different treatments may be ranked the following order: homogenization>cold rolling+325 ℃ annealing>rolling>cold rolling +475 ℃ annealing. With the increase of RE content, the corrosion rate of the Al-Mn-xRE alloys subjected to cold rolling and annealing at 325 ℃ decreases first and then increases, and reaches the minimum value when the RE content is 0.18%. The corrosion resistance of the rolled Al-Mn-0.18RE alloy is lower than that of homogenized Al-Mn-0.18RE alloy, but the corrosion resistance can be improved by subsequent stabilization annealing at 325 ℃.

Key words:  Al-Mn-RE alloy      RE content      microstructure      electrochemical corrosion      chemical immersion corrosion     
Received:  05 August 2021     
ZTFLH:  TG146.2  
Fund: Chongqing Natural Science Foundation(cstc2020jcyj-bsh0035)
Corresponding Authors:  WANG Jiaqi     E-mail:  onebai@tom.com
About author:  WANG Jiaqi, E-mail: onebai@tom.com

Cite this article: 

WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 693-698.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.188     OR     https://www.jcscp.org/EN/Y2022/V42/I4/693

Fig.1  Metallographic images of homogenized Al-Mn-xRE alloy after electropolishing: (a) x=0; (b) x=0.05; (c) x=0.18; (d) x=0.25; (e) x=0.32
Fig.2  Metallographic images of homogenized Al-Mn-xRE alloy after anodic coating: (a) x=0; (b) x=0.05; (c) x=0.18; (d) x=0.25; (e) x=0.32
Fig.3  SEM images of homogenized Al-Mn-xRE alloy: (a) x=0; (b) x=0.18; (c) x=0.32
LocationAlMnFe
A82.347.2510.41
B76.587.5515.87
C75.998.2915.72
Table 1  Energy spectrum analysis of homogenized Al-Mn-xRE alloy (mass fraction / %)
Fig.4  Polarization curves of homogenized Al-Mn-xRE alloy in 3.5%NaCl solution
Content / %Ecorr vs SCEIcorr / 10-8 A·cm-2Epitting vs SCE
0-8124.63-655
0.05-7603.79-652
0.10-7063.62-638
0.18-6942.45-634
0.25-7113.02-636
0.32-8053.98-644
Table 2  Polarization curve fitting results of homogenized Al-Mn-RE alloy in 3.5%NaCl solution
Fig.5  Morphologies of homogenized Al-Mn-xRE alloy after electrochemical corrosion: (a) x=0; (b) x=0.32
LocationAlClMnSi
A95.060.130.92---
B91.380.070.775.89
Table 3  Energy spectrum analysis of homogenized Al-Mn-xRE alloy after electrochemical corrosion (mass fraction / %)
Fig.6  Polarization curves of Al-Mn-0.18RE alloy with different states in 3.5%NaCl solution
State of sampleESCE / mVESCE / mV
Homogenization-694-634
Rolling-812-696
Cold rolling+325 ℃ annealing-801-694
Cold rolling+475 ℃ annealing-825-698
Table 4  Polarization curve fitting results of Al-Mn-0.18RE alloy with different states in 3.5%NaCl solution
Fig.7  Corresponding relationship between corrosion rate and RE content of cold rolled and 325 ℃ annealed Al-Mn-xRE alloy
1 Ying X J, Zhong J H. Al-Mg-Mn alloy plate using for industrial building roof [J]. China Build. Waterproof., 2014, (15): 12
应晓捷, 钟俊浩. 工业建筑屋面用铝镁锰合金板 [J]. 中国建筑防水, 2014, (15): 12
2 Chen M. Optimization of extrusion temperature of new Al-Mg-Zn-Ti aluminum alloy plate for industrial building roof [J]. Hot Work. Technol., 2019, 48(21): 99
陈萌. 工业建筑屋面用新型Al-Mg-Zn-Ti铝合金板的挤压温度优化 [J]. 热加工工艺, 2019, 48(21): 99
3 Guo F Q, Duan S W, Wu D T, et al. Effect of retrogression re-aging treatment on corrosion behavior of 7055 Al-Zn-Mg alloy [J]. Mater. Res. Express, 2020, 7: 106523
doi: 10.1088/2053-1591/abc191
4 Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
张欣, 杨光恒, 王泽华 等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
5 Coury F G, Botta W J, Bolfarini C, et al. Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al-Mn alloys [J]. Acta Mater., 2015, 98: 221
doi: 10.1016/j.actamat.2015.07.046
6 Hu T, Yin D F, Yu X X, et al. Evolution of microstructure in Al-Mn alloy with a low ratio of Fe/Si during homogenization [J]. Rare Met. Mater. Eng., 2018, 47: 2631
doi: 10.1016/S1875-5372(18)30200-5
7 Li L, Wu Z L, Xia C D, et al. Effect of homogenization annealing on precipitation behavior and microstructure evolution of AA3003 aluminum alloy with high Mn content [J]. Trans. Mater. Heat Treat., 2018, 39(9): 15
李龙, 吴忠亮, 夏承东 等. 均匀化退火对高Mn含量AA3003铝合金析出行为和组织演变的影响 [J]. 材料热处理学报, 2018, 39(9): 15
8 Yan H, Zhang J, Gu X D, et al. Effects of Mn, Ce on the microstructure of Al-Mn alloys [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 925
颜寒, 张静, 顾晓栋 等. Mn、Ce含量对Al-Mn合金显微组织的影响 [J]. 特种铸造及有色合金, 2017, 37: 925
9 Fang D R, Li F, Liu F F, et al. Effect of equal channel angular pressing on corrosion resistance of Al-Mg alloy [J]. Appl. Mech. Mater., 2013, 457/458: 3
10 Lin S P, Nie Z R, Huang H, et al. Annealing behavior of a modified 5083 aluminum alloy [J]. Mater. Des., 2010, 31: 1607
doi: 10.1016/j.matdes.2009.09.004
11 Liu Y, Cheng Y F. Characterization of passivity and pitting corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Appl. Electrochem., 2011, 41: 151
doi: 10.1007/s10800-010-0215-6
12 Gui X H, Jiang T, Han N M. Effect of alloy elements on corrosion resistance and tensile properties of Al-Mg aluminum alloys [J]. Mater. Prot., 2018, 51(7): 47
贵星卉, 江涛, 韩念梅. 合金元素对Al-Mg合金抗腐蚀性能及拉伸性能的影响 [J]. 材料保护, 2018, 51(7): 47
13 Liu S E, Huang J K, Zhang J X, et al. Microstructure, mechanical performance, and corrosion behavior of electron beam welded thick incoloy 825 joints [J]. J. Mater. Eng. Perform., 2021, 30: 3735
doi: 10.1007/s11665-021-05652-0
14 Zhang M J, Xia W J, Chen D, et al. Influence of hot extrusion on microstructure and properties of As-casted Mg-3.5Al-3.5Ca-0.6Mn alloy [J]. Mater. Mechan. Eng., 2017, 41(5): 32
张孟军, 夏伟军, 陈鼎 等. 热挤压对铸态Mg-3.5Al-3.5Ca-0.6Mn合金组织与性能的影响 [J]. 机械工程材料, 2017, 41(5): 32
15 Liu Y, Meng G Z, Cheng Y F. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions [J]. Electrochim. Acta, 2009, 54: 4155
doi: 10.1016/j.electacta.2009.02.058
16 Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
17 Niu L, Cheng Y F. Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution [J]. J. Mater. Sci., 2007, 42: 8613
doi: 10.1007/s10853-007-1841-1
[1] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[2] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[3] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[4] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[5] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[6] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[7] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[8] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[9] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[10] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[11] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[13] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[14] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[15] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
No Suggested Reading articles found!