|
|
Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys |
LV Xin1, DENG Kunkun1,2( ), WANG Cuiju1, NIE Kaibo1, SHI Quanxin1, LIANG Wei1,2 |
1.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The sub-micron SiCp, micron SiCp and dual-scale SiCp reinforced AZ91 Mg-alloy based composites, namely composites (S1), (M10), and (S1+M9) respectively, were prepared by semi-solid stirring casting method. They were then characterized by means of optical microscope, scanning electron microscope, X-ray diffraction, immersion method, and electrochemical test, etc in terms of the effect of the particle size of SiCp on the microstructure and corrosion properties of the as-cast AZ91 Mg-alloys. The results show that the addition of SiCp can refine significantly the semi-continuous network-like Mg17Al12 phase in the AZ91 Mg-alloy, which is attributed to the heterogeneous nucleation effect of SiCp on the Mg17Al12 phase. The Mg17Al12 phase can be precipitated as Mg17Al12 particles with core of sub-micron SiCp, and/or directly on the surface of micron SiCp. By comparing the two composites reinforced with the same volume fraction of SiCp, it can be found that the corrosion resistance of S1+M9 is significantly lower than that of M10, indicating that when the content of SiCp is constant, changing the size of SiCp from micron to sub-micron will reduce the corrosion resistance of the composites.
|
Received: 04 January 2022
32134.14.1005.4537.2022.006
|
|
Fund: National Natural Science Foundation of China(52001223);National Natural Science Foundation of China(51771128);National Natural Science Foundation of China(51771129) |
1 |
Wei Y H, Xu B S. Theory and Practice of Magnesium Alloy Corrosion Protection [M]. Beijing: Metallurgical Industry Press, 2007
|
|
卫英慧, 许并社. 镁合金腐蚀防护的理论与实践 [M]. 北京: 冶金工业出版社, 2007
|
2 |
Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
|
|
郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
|
3 |
Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
|
|
邵银华, 王金龙, 张伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
|
4 |
Sun X F, Wang C J, Deng K K, et al. Aging behavior of AZ91 matrix influenced by 5 μm SiCp: investigation on the microstructure and mechanical properties [J]. J. Alloy. Compd., 2017, 727: 1263
doi: 10.1016/j.jallcom.2017.08.198
|
5 |
Nie K B, Wang X J, Hu X S, et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration [J]. Mater. Sci. Eng., 2011, 528A: 5278
|
6 |
Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiC reinforced magnesium composites [J]. Corros. Sci., 2007, 49: 711
doi: 10.1016/j.corsci.2006.05.047
|
7 |
Zhang C Y, Zhang T, Shao Y W, et al. Corrosion behavior of a hot extruded magnesium alloy AZ91 based composite SiCP/AZ91 [J]. Corros. Sci. Prot. Technol., 2014, 26: 99
|
|
张春艳, 张涛, 邵亚薇 等. 热挤压态SiCp/AZ91镁基复合材料腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2014, 26: 99
|
8 |
Ganguly S, Mondal A K, Sarkar S, et al. Improved corrosion response of squeeze-cast SiC nanoparticles reinforced AZ91-2.0Ca-0.3Sb alloy [J]. Corros. Sci., 2020, 166: 108444
doi: 10.1016/j.corsci.2020.108444
|
9 |
Singla S, Kang A S, Sidhu T S. Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite [J]. Mater. Today Proc., 2020, 26: 3138
|
10 |
Deng K K, Wang X J, Wu Y W, et al. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite [J]. Mater. Sci. Eng., 2012, 543A: 158
|
11 |
Zhou S S, Deng K K, Li J C, et al. Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite [J]. Mater. Des., 2014, 63: 672
doi: 10.1016/j.matdes.2014.07.004
|
12 |
Wu P P, Deng K K, Nie K B, et al. Corrosion resistance of AZ91 Mg alloy modified by high-current pulsed electron beam [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 218
doi: 10.1007/s40195-018-0798-1
|
13 |
Ma X L, Prameela S E, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: a comparative study to conventional aging [J]. Acta Mater., 2019, 172: 185
doi: 10.1016/j.actamat.2019.04.046
|
14 |
Liu Y, Cheng W L, Liu Y H, et al. Effect of alloyed Ca on the microstructure and corrosion behavior of extruded Mg-Bi-Al-based alloys [J]. Mater. Charact., 2020, 163: 110292
doi: 10.1016/j.matchar.2020.110292
|
15 |
Zhu Y X, Song G L, Wu P P, et al. A burnished and Al-alloyed magnesium surface with improved mechanical and corrosion properties [J]. Corros. Sci., 2021, 184: 109395
doi: 10.1016/j.corsci.2021.109395
|
16 |
Hagihara K, Okubo M, Yamasaki M, et al. Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions [J]. Corros. Sci., 2016, 109: 68
doi: 10.1016/j.corsci.2016.03.019
|
17 |
Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions [J]. J. Magnes. Alloys, 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
|
18 |
Yin S Q, Duan W C, Liu W H, et al. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys [J]. Corros. Sci., 2020, 166: 108419
doi: 10.1016/j.corsci.2019.108419
|
19 |
Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
|
|
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
|
20 |
Birbilis N, Cavanaugh M K, Sudholz A D, et al. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys [J]. Corros. Sci., 2011, 53: 168
doi: 10.1016/j.corsci.2010.09.013
|
21 |
Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
doi: 10.1016/j.corsci.2008.04.010
|
22 |
Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|