|
|
Corrosion and Aging Behavior of 2A97 Al-Li Alloy with Typical Protective Coatings in Tropical Marine Atmosphere Environment |
JIA Jinghuan1, LIU Ming1( ), LUO Chen1, SUN Zhihua1, ZHAO Mingliang1, LI Xiaogang2 |
1 AECC Key Laboratory of Advanced Corrosion and Protection of Aeronautical Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Two typical protective coatings applied on 2A97 Al-Li alloy were exposed in Wanning natural environment test station in Hainan island, and their corrosion and aging behavior were studied by means of surface and cross section morphology observation, infrared spectroscopy, electrochemical impedance spectroscopy and other methods. The 2A97 Al-Li alloy was firstly subjected to anodic oxidation treatment, then applying either two layer coating of primer+topcoat (coating 1) or mono layered coating of only primer (coating 2). The results show that after 2.5 a exposure, the coating 1 keeps intact i.e. the coating and anodized layer are relatively complete, and the alloy matrix is not corroded. In the contrast, a large number of micro cracks emerge in coating 2 after 1 a exposure, and even spallation can be observed in some local areas of the coating, meanwhile, the anodic oxidation layer becomes thinner and the alloy matrix suffers from corrosion with the extension of exposure time. Compared with the coating 2, the coating 1 has better aging resistance, showing lower rate of light loss and chromatic aberration. The impedance spectrum of coating 1 consists of a capacitive reactance arc after different periods of exposure, which means that the corrosion process of coating 1 is mainly controlled by the inward diffusion of water and oxygen. While the electrolyte invades the interface between coating 2 and the matrix after 1 a exposure, and the coating begins to peel off with the extension of exposure time, which is mainly manifested as the corrosion of Al-Li alloy matrix, and the corrosion rate is controlled by the electrochemical process.
|
Received: 08 September 2022
32134.14.1005.4537.2022.277
|
|
Fund: National Defense Science, Technology, Industry and Technology Foundation "13th Five-Year" Scientific Research Project(KH61180524) |
Corresponding Authors:
LIU Ming, E-mail: luminousa@126.com
|
[1] |
Kuang Q B, Wang R C, Peng C Q, et al. Progress on preparation and obdurability of aluminum-lithium alloy[J/OL]. Chin. J. Nonferrous Met., 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html
|
|
( 邝泉波, 王日初, 彭超群. 铝锂合金制备及强韧化研究进展[J/OL]. 中国有色金属学报, 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html)
|
[2] |
Li J F, Chen Y L, Ma Y L, et al. Basic research and application technology development of Al-Li alloy in China[J]. Aerosp. Mater. Technol., 2021, 51(4): 37
|
|
( 李劲风, 陈永来, 马云龙. 国内铝锂合金基础研究及应用技术开发[J]. 宇航材料工艺, 2021, 51(4): 37)
|
[3] |
Gao C B. Characteristics of Al-Li alloy and its application prospect in helicopter[J]. Sci. Technol. Innovation, 2020, (29): 5
|
|
( 高长宝. 铝锂合金的特点及在直升机上的应用展望[J]. 科学技术创新, 2020, (29): 5)
|
[4] |
Li J J, Xu J H, Huang L, et al. Research progress on thermomechanical treatment process for Al-Li alloy[J]. Forg. Stamp. Technol., 2021, 46(11): 1
doi: 10.13330/j.issn.1000-3940.2021.11.001
|
|
( 李建军, 徐佳辉, 黄亮. 铝锂合金形变热处理工艺研究进展[J]. 锻压技术, 2021, 46(11): 1)
doi: 10.13330/j.issn.1000-3940.2021.11.001
|
[5] |
Meng X M, Ma Y L, Huang W J, et al. Microstructure of the new aluminium lithium alloys and its influences on localized corrosion[J]. Mater. Rev., 2014, 28(13): 82
|
|
( 孟晓敏, 麻彦龙, 黄伟九. 新型铝锂合金的微观组织及其在局部腐蚀中的作用[J]. 材料导报, 2014, 28(13): 82)
|
[6] |
Niu J T. Surface integrity and corrosion behavior of milled Al-Li Alloy 2A97[D]. Ji'nan: Shandong University, 2020
|
|
( 牛金涛. 铝锂合金2A97铣削加工表面完整性及耐腐蚀性能研究[D]. 济南: 山东大学, 2020)
|
[7] |
Yi Y N, Ma Y L, Luo X X, et al. Review on Effect of alloy phases on localized corrosion of new generation aluminum-lithium alloys[J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2017, 31(4): 50
|
|
易雅楠, 麻彦龙, 罗肖肖. 合金相对新型铝锂合金局部腐蚀行为的影响研究进展[J]. 重庆理工大学学报 (自然科学), 2017, 31(4): 50)
|
[8] |
Zhang H B, Luo G Y, Yao K, et al. Study on aging performance of acrylic polyurethane coatings in different natural environment[J]. Thermosetting Resin, 2020, 35(5): 20
|
|
( 张洪彬, 罗高义, 姚珂. 丙烯酸聚氨酯涂层不同自然环境下老化性能研究[J]. 热固性树脂, 2020, 35(5): 20)
|
[9] |
Luo L Z, Xiao Y, Su Y, et al. Effects of southeast coastal atmospheric environment on aging behavior of polyurethane coating[J]. Equip. Environ. Eng., 2015, 12(6): 42
|
|
( 罗来正, 肖勇, 苏艳. 东南沿海气候条件对聚氨酯涂层老化行为影响研究[J]. 装备环境工程, 2015, 12(6): 42)
|
[10] |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
|
( 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42: 403)
doi: 10.11902/1005.4537.2021.165
|
[11] |
Luo C, Cai J P, Xu G X, et al. Equivalent degradation of aviation organic coating during indoor accelerated testing and outdoor exposure[J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 1750
|
|
( 骆晨, 蔡健平, 许广兴. 航空有机涂层在户内加速试验与户外暴露中的损伤等效关系[J]. 航空学报, 2014, 35: 1750)
doi: 10.7527/S1000-6893.2014.0007
|
[12] |
Lin K, Dong M F, Liu G H. Study on hard anodized film properties and corrosion mechanism of 6061 aluminum alloy[J]. Light Ind. Sci. Technol., 2020, 36(12): 17
|
|
( 林康, 董铭锋, 刘刚华. 6061铝合金硬质阳极氧化膜性能及腐蚀机理分析[J]. 轻工科技, 2020, 36(12): 17)
|
[13] |
Deng P C, Zhong J, Wang K, et al. Important influential factor for corrosion of high-altitude marine engineering equipment in atmosphere-chloride ion deposition rate[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 474
|
|
( 邓培昌, 钟杰, 王坤. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40: 474)
doi: 10.11902/1005.4537.2019.206
|
[14] |
Zhao Q Y, Jia Z H, Zhao J B, et al. Corrosion behavior of anodized 6061 aluminum alloy in industrial-marine atmosphere in Qingdao after long-term exposure[J]. Chin. J. Nonferrous Met., 2020, 30: 1249
doi: 10.1016/S1003-6326(20)65293-1
|
|
( 赵起越, 贾志浩, 赵晋斌. 阳极氧化6061铝合金在工业海洋大气环境长周期暴晒时的腐蚀行为[J]. 中国有色金属学报, 2020, 30: 1249)
|
[15] |
Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Met. Mater. Eng., 2011, 40(suppl.2): 275
|
[16] |
Zhao Y, Li X. Progress in research on aging mechanism of polymer coating[J]. Synth. Mater. Aging Appl., 2014, 43(6): 57
|
|
( 赵苑, 李欣. 高分子涂层老化机理研究进展分析[J]. 合成材料老化与应用, 2014, 43(6): 57)
|
[17] |
Zhang L. Study on failure process of several organci coating under wet/dry cycle condition[D]. Beijing: Beijing University of Chemical Technology, 2011
|
|
( 张亮. 几种有机涂层体系在干湿交替环境下失效过程的研究[D]. 北京: 北京化工大学, 2011)
|
[18] |
Tan X M, Wang P, Wang D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J]. Equip. Environ. Eng., 2017, 14(1): 5
|
|
( 谭晓明, 王鹏, 王德. 基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J]. 装备环境工程, 2017, 14(1): 5)
|
[19] |
Margarit-Mattos I C P. EIS and organic coatings performance: revisiting some key points[J]. Electrochim. Acta, 2020, 354: 136725
doi: 10.1016/j.electacta.2020.136725
|
[20] |
Qian A, Wang P, Tan X M, et al. Current status and key technology of research on aging faliure of organic coating[J]. Mech. Sci. Technol. Aerosp. Eng., 2017, 36(suppl.1): 84
|
|
( 钱昂, 王鹏, 谭晓明. 有机涂层老化失效研究及关键技术问题[J]. 机械科学与技术, 2017, 36 (增刊1): 84)
|
[21] |
Sun Z H, Zhang N, Cai J P, et al. Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 746
|
|
( 孙志华, 章妮, 蔡健平. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29: 746)
|
[22] |
Luo C, Sun Z H, Tang Z H, et al. Comparison of atmospheric corrosivity of 2297-T87 Al-Cu-Li alloy[J]. Equip. Environ. Eng., 2020, 17(5): 10
|
|
( 骆晨, 孙志华, 汤智慧. 2297-T87铝锂合金用于大气腐蚀性的比较[J]. 装备环境工程, 2020, 17(5): 10)
|
[23] |
Zhong Y, Su Y, Luo L Z, et al. Corrosion behavior of 7B50 aluminum alloy in four typical atmospheric environments[J]. Equip. Environ. Eng., 2021, 18(11): 143
|
|
( 钟勇, 苏艳, 罗来正. 四种典型大气环境下7B50铝合金的腐蚀行为研究[J]. 装备环境工程, 2021, 18(11): 143)
|
[24] |
Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
|
|
( 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
|
[25] |
Zhang Z, Gao J, He H, et al. Influence of atmospheric environmental factors on weathering performance of aviation organic coatings[J]. Paint Coat. Ind., 2021, 51(6): 57
|
|
( 张钊, 高瑾, 贺辉. 大气环境因素对航空有机涂层耐老化性影响的分析[J]. 涂料工业, 2021, 51(6): 57)
|
[26] |
Zhao Q C, Luo L Z, Li X F, et al. Corrosion behavior of 7A85 aluminum alloy in two typical atmospheric environments[J]. Equip. Environ. Eng., 2020, 17(7): 70
|
|
( 赵全成, 罗来正, 黎小锋. 两种典型大气环境下7A85铝合金的腐蚀行为研究[J]. 装备环境工程, 2020, 17(7): 70)
|
[27] |
Bai Z H, Huang Y H, Li X G, et al. Environmental corrosion in industrial-marine atmosphere at Qingdao of 7050 al-alloy anodized in boric-and sulfuric-acid electrolyte[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
|
|
( 白子恒, 黄运华, 李晓刚. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 580)
doi: 10.11902/1005.4537.2016.169
|
[28] |
Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals[D]. Hangzhou: Zhejiang University, 2005
|
|
( 张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究[D]. 杭州: 浙江大学, 2005)
|
[29] |
Su Y, Shu C, Luo L Z, et al. Weathering mechanism and electrochemical characterization of aircraft coating[J]. Surf. Technol., 2011, 40(6): 18
|
|
( 苏艳, 舒畅, 罗来正. 航空有机涂层的老化失效规律和电化学表征[J]. 表面技术, 2011, 40(6): 18)
|
[30] |
Xiang J Y, Liu C X, Ma F G. Research progress on high performance silicone-modified phenolic resin[J]. Silicone Mater., 2019, 33: 71
|
|
( 向靖宇, 刘春霞, 马凤国. 高性能有机硅改性酚醛树脂的研究进展[J]. 有机硅材料, 2019, 33: 71)
|
[31] |
Zheng Y Y, Liu X Y, Pan Y Z. Synthesis and properties of SiO2/silicone/cardanol-aldehyde resin composite coating[J]. J. Quanzhou Normal Univ., 2019, 37(2): 1
|
|
( 郑燕玉, 刘小英, 潘亦真. SiO2/有机硅/腰果酚醛树脂复合涂料的制备与性能[J]. 泉州师范学院学报, 2019, 37(2): 1)
|
[32] |
Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
|
|
( 付海波, 刘晓茹, 孙媛. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40: 373)
doi: 10.11902/1005.4537.2019.109
|
[33] |
Lu Y L. Ageing mechanisms and influencing factors for organic coatings used in plateau environment[J]. Paint Coat. Ind., 2012, 42(4): 12
|
|
( 卢言利. 有机涂层高原环境影响参数分析及老化机理研究[J]. 涂料工业, 2012, 42(4): 12)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|