Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 13-21    DOI: 10.11902/1005.4537.2022.186
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment
LIU Mingming1,2, YANG Xiaobing3, CHEN Xiaoqi3, WANG Zhengbin2(), ZHENG Yugui2, HE Chunlin4
1.Normal College, Shenyang University, Shenyang 110044, China
2.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Nantong Cellulose Fibers Co. Ltd., Nantong 226008, China
4.Liaoning Provincial Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044, China
Download:  HTML  PDF(1311KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Acetic acid is an important raw material and plays an important role in the modern chemical industry. However, acetic acid is highly corrosive, which can easily cause corrosion of metallic components, threatening the service safety of equipment. In order to better understanding and preventing the corrosion induced by acetic acid, this paper summarizes the mechanisms, influencing factors (temperature, acetic acid concentration and impurities) and protection measures for corrosion of metals in acetic acid, on the basis of practical corrosion failure cases. It is expected to provide some guidance for selecting proper materials and taking effective measures to protect components serving in acetic acid environments from corrosion.

Key words:  acetic acid      metals      corrosion mechanism      influencing factor      prevention measure     
Received:  08 June 2022      32134.14.1005.4537.2022.186
ZTFLH:  TG174  

Cite this article: 

LIU Mingming, YANG Xiaobing, CHEN Xiaoqi, WANG Zhengbin, ZHENG Yugui, HE Chunlin. Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 13-21.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.186     OR     https://www.jcscp.org/EN/Y2023/V43/I1/13

Fig.1  Relationship between the surface coverage of acetic acid adsorbed on metal materials and the undissociated acetic acid concentration. Cathodic currents (green diamonds) and anodic currents (red squares)[6]
Fig.2  Schematic diagram of the crevice corrosion mechanism of N80 carbon steel in CO2-containing solution containing HAc[21]: (a) at the beginning, (b) after 72 h
Material90% HAc (boiling)50% HAc+10% HCOOH (boiling)50%HAc+25% HCOOH (boiling)50%HAc+50% HCOOH (boiling)HAc:Cl-=1:1 (70 ℃)HAc:Cl-=2:1 (boiling)HAc+Br-(80 ℃)
3040.5-1.0>0.1------<0.10.1-1.02.05
316L0.01-0.10.1-1.00.1-1.0---<0.1<0.11.67
2205---<0.10.1-1.00.1-1.0<0.1<0.1Pitting
904L------0.1-1.00.1-1.0<0.1<0.10.47
254SMO---<0.1<0.1<0.1<0.1<0.10.36
Table 1  Corrosion rates of stainless steel in acetic acid solutions (mm·a-1 )
Fig.3  Corrosion rates of austenitic and duplex stainless steels in 50% acetic acid solutions with different proportions of formic acid[25]
MaterialHAcHAc+Cl-/Br-HAc+HCOOH+Cl-HAc+Cl-+Br-
<65 ℃65~135 ℃>135 ℃<105 ℃105~135 ℃>135 ℃<100 ℃>120 ℃Oxygen enrichmentLack of oxygen
304
316L
904L
254SMO
TA2
C276
Table 2  Recommendations for the use of metal materials in different acetic acid solutions
1 Zhang X. Study and optimization of 3D620 acetic acid distillation column [D]. Xi'an: Xi'an University of Architecture and Technology, 2019
张鑫. 3D620醋酸精馏塔的研究及优化 [D]. 西安: 西安建筑科技大学, 2019
2 Liang D D, Wei X S, Wang Y, et al. Electrochemical behaviors and passive film properties of Fe-based bulk metallic glass in Cl--containing acetic acid solutions under high temperature [J]. J. Alloy. Compd., 2018, 766: 964
doi: 10.1016/j.jallcom.2018.07.029
3 Singh S K, Mukherjee A K. Kinetics of mild steel corrosion in aqueous acetic acid solutions [J]. J. Mater. Sci. Technol., 2010, 26: 264
doi: 10.1016/S1005-0302(10)60044-8
4 Cheng F T, Shi P, Pang G K H, et al. Microstructural characterization of oxide film formed on NiTi by anodization in acetic acid [J]. J. Alloy. Compd., 2007, 438: 238
doi: 10.1016/j.jallcom.2006.08.020
5 Xiao M. Supply and demand situation and development prospect of acetic acid at home and abroad [J]. Fine Spec. Chem., 2019, 27(10): 21
肖铭. 国内外醋酸的供需现状及发展前景 [J]. 精细与专用化学品, 2019, 27(10): 21
6 Kahyarian A, Schumaker A, Brown B, et al. Acidic corrosion of mild steel in the presence of acetic acid: mechanism and prediction [J]. Electrochim. Acta, 2017, 258: 639
doi: 10.1016/j.electacta.2017.11.109
7 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-a review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
8 Jiang W H. Analysis on the failure of the tube corrosion of dehydration column reboiler [J]. Press. Vess. Technol., 2012, 29(6): 74
蒋维宏. PTA装置溶剂脱水塔再沸器换热管腐蚀穿孔失效分析 [J]. 压力容器, 2012, 29(6): 74
9 Qian G H. Corrosion analysis and countermeasures of acetic acid system equipment in PVA production line [J]. China Chem. Trade, 2017, 9(14): 191
钱光海. PVA生产线醋酸系统设备的腐蚀分析与对策 [J]. 中国化工贸易, 2017, 9(14): 191
10 Liu H A, Ye J X. Review of corrosion-resistant metal materials for acetic acid [J]. China Stainless, 2015, (2): 33
刘焕安, 叶际宣. 醋酸用耐腐蚀金属材料评述 [J]. 不锈, 2015, (2): 33
11 Hu Q, Guo X, Zhang G, et al. The corrosion behavior of carbon steel in CO2-saturated NaCl crevice solution containing acetic acid [J]. Mater. Corros., 2012, 63: 720
12 Okafor P C, Brown B, Nesic S. CO2 corrosion of carbon steel in the presence of acetic acid at higher temperatures [J]. J. Appl. Electrochem., 2009, 39: 873
doi: 10.1007/s10800-008-9733-x
13 George K S, Nešić S. Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid—Part 1: Basic Mechanisms [J]. Corrosion, 2007, 63: 178
doi: 10.5006/1.3278342
14 Nord H, Bech-Nielsen G. The anodic dissolution of iron—III. Coverage on iron in the active and passive states in acid carboxylate solutions [J]. Electrochim. Acta, 1971, 16: 849
doi: 10.1016/0013-4686(71)85052-1
15 Veloz M A, González I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S [J]. Electrochim. Acta, 2002, 48: 135
doi: 10.1016/S0013-4686(02)00549-2
16 Amri J, Gulbrandsen E, Nogueira R P. Pit growth and stifling on carbon steel in CO2-containing media in the presence of HAc [J]. Electrochim. Acta, 2009, 54: 7338
doi: 10.1016/j.electacta.2009.07.061
17 Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments [J]. Corros. Sci., 2010, 52: 1728
doi: 10.1016/j.corsci.2010.01.010
18 Amri J, Gulbrandsen E, Nogueira R P. The effect of acetic acid on the pit propagation in CO2 corrosion of carbon steel [J]. Electrochem. Commun., 2008, 10: 200
doi: 10.1016/j.elecom.2007.11.028
19 Zhao S Z, Xu L N, Dou J J, et al. Influence of acetic acid on top localized corrosion of X70 steel pipeline in CO2 containing wet gas [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 231
赵书振, 许立宁, 窦娟娟 等. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2016, 36: 231
20 Li Y Z, Guo X P, Zhang G A. Synergistic effect of stress and crevice on the corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 123: 228
doi: 10.1016/j.corsci.2017.05.005
21 Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
doi: 10.1016/j.corsci.2016.08.002
22 Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
doi: 10.1016/j.corsci.2017.08.028
23 Song G L. Potential and current distributions of one-dimensional galvanic corrosion systems [J]. Corros. Sci., 2010, 52: 455
doi: 10.1016/j.corsci.2009.10.003
24 Tu H L. Corrosion analysis and countermeasures of acetic acid equipment in polyvinyl alcohol production line [J]. Anhui Sci. Technol., 2019, (7): 45
涂海浪. 聚乙烯醇生产线醋酸系统设备的腐蚀分析与对策 [J]. 安徽科技, 2019, (7): 45
25 Yu C Y. Discussion of corrosion resulted from acetic acid and selection of structural material [J]. Process Equip. Piping, 2008, 45(6): 53
余存烨. 醋酸的腐蚀及其结构材料选用探讨 [J]. 化工设备与管道, 2008, 45(6): 53
26 Sekine I, Masuko A, Senoo K. Corrosion behavior of AISI 316 stainless steel in formic and acetic acid solutions [J]. Corrosion, 1987, 43: 553
doi: 10.5006/1.3583900
27 Sekine I, Kawase T, Kobayashi M, et al. The effects of chromium and molybdenum on the corrosion behaviour of ferritic stainless steels in boiling acetic acid solutions [J]. Corros. Sci., 1991, 32: 815
doi: 10.1016/0010-938X(91)90026-L
28 Sekine I, Hatakeyama S, Nakazawa Y. Corrosion behaviour of Type 430 stainless steel in formic and acetic acids [J]. Corros. Sci., 1987, 27: 275
doi: 10.1016/0010-938X(87)90023-0
29 Hu R Z, Lin C J, Tan J G, et al. Electrochemical study of the corrosion behavior of coalesced copper and SW-206 stainless steel in the acetic-acid solution [J]. Electrochemistry, 1996, 2: 332
胡荣宗, 林昌建, 谭建光 等. 磷脱氧铜和不锈钢在醋酸介质中腐蚀行为的电化学研究 [J]. 电化学, 1996, 2: 332
30 Sun Z M, Wang B, Chen J F. Corrosion behavior of metal materials in acetic acid medium [J]. Corros. Prot., 1998, 19: 55
孙占梅, 王彪, 陈金富. 金属材料在醋酸中的腐蚀行为研究 [J]. 腐蚀与防护, 1998, 19: 55
31 Skine I, Momoi K. Corrosion behaviour of SUS 329J1 stainless steel in acetic acid solutions [J]. Key Eng. Mater., 1988, 20-28: 3289
doi: 10.4028/www.scientific.net/KEM.20-28.3289
32 Perren R A, Suter T A, Uggowitzer P J, et al. Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method: I. Precipitation-free states [J]. Corros. Sci., 2001, 43: 707
doi: 10.1016/S0010-938X(00)00087-1
33 Cheng X Q, Li X G, Yang L X, et al. Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky [J]. J. Wuhan Univ. Technol.-Mat. Sci. Ed., 2008, 23(4): 574
34 Cheng S S. Stainless steel corrosion behavior study of PTA plants [D]. Xi'an: Xi'an Shiyou University, 2012
程姗姗. 化纤PTA装置不锈钢材料腐蚀行为研究 [D]. 西安: 西安石油大学, 2012
35 Yu C Y. Perception and discussion of pitting on stainless steels equipment in acetic acid [J]. Total Corros. Control, 2010, 24(4): 20
余存烨. 醋酸装置不锈钢设备点腐蚀原因分析与防护措施 [J]. 全面腐蚀控制, 2010, 24(4): 20
36 Yu C Y. The analysis of corrosion and using material in acetic acid equipments in chemical industry and chemical fibre production [J]. Total Corros. Control, 2007, 21(3): 21
余存烨. 化工化纤生产中醋酸设备腐蚀与用材分析 [J]. 全面腐蚀控制, 2007, 21(3): 21
37 Liu G Q, Zhu Z Y, Ke W. Corrosion behavior of stainless steels and nickel based alloys in acetic acid solution [J]. Corros. Sci. Prot. Technol., 2000, 12: 296
刘国强, 朱自勇, 柯伟. 不锈钢和镍基合金在含溴醋酸中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2000, 12: 296
38 Yu C Y. Approach and disussion of materials selection for equipment in high temperature impurity containing acetic acid environment [J]. Corros. Prot., 1999, 20: 37
余存烨. 高温含杂醋酸环境中设备选材的探讨 [J]. 腐蚀与防护, 1999, 20: 37
39 Li S R, Zuo Y, Tang Y M, et al. The electroplated Pd-Co alloy film on 316L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring [J]. Appl. Surf. Sci., 2014, 321: 179
doi: 10.1016/j.apsusc.2014.10.013
40 Turnbull A, Ryan M, Willetts A, et al. Corrosion and electrochemical behaviour of 316L stainless steel in acetic acid solutions [J]. Corros. Sci., 2003, 45: 1051
doi: 10.1016/S0010-938X(02)00149-X
41 Sun Z M, Zhang J. Corrosion cause of 00Cr20Ni25Mo4.5Cu stainless steel in mixed acetic-formic acid containing chloride ion at elevated temperature [J]. Corros. Prot., 2001, 22: 496
孙占梅, 张军. 高温含杂质醋酸中00Cr20Ni25Mo 4.5Cu不锈钢腐蚀分析 [J]. 腐蚀与防护, 2001, 22: 496
42 Singh V B, Singh R N. Corrosion and inhibition studies of copper in aqueous solutions of formic acid and acetic acid [J]. Corros. Sci., 1995, 37: 1399
doi: 10.1016/0010-938X(95)00042-I
43 Otero E, Pardo A, Utrilla M V, et al. The corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of organic acids [J]. Corros. Sci., 1997, 39: 453
doi: 10.1016/S0010-938X(97)86097-0
44 Chief of Japan Titanium Association, translated by Zhou L Z. Titanium Materials and Its Applications [M]. Beijing: Metallurgical Industry Press, 2008: 39
日本钛协会著, 周连在 译. 钛材料及其应用 [M]. 北京: 冶金工业出版社, 2008: 39
45 Cheng X Q, Li X G, Du C W, et al. Corrosion behavior of stainless steel and nickel based alloy in acetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 70
程学群, 李晓刚, 杜翠薇 等. 不锈钢和镍基合金在高温高压醋酸溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2006, 26: 70
46 Liu G Q, Zhu Z Y, Ke W, et al. Corrosion behavior of 304,254 SMO and Hastelloy C-276 in HAc solution containing Br- ion [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 167
刘国强, 朱自勇, 柯伟 等. 不锈钢在含有溴离子的醋酸溶液中的腐蚀 [J]. 中国腐蚀与防护学报, 2001, 21: 167
47 Li M C, Zeng C L, Lin H C, et al. Corrosion behavior of 316 stainless steel in solutions containing F-/Cl- ions [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 162
李谋成, 曾潮流, 林海潮 等. 316不锈钢在F-/Cl-酸性溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2002, 22: 162
48 Yu C Y. Pit corrosion of stainless steel in PTA unit [J]. Corros. Prot. Petrochem. Ind., 2009, 26(6): 1
余存烨. PTA装置不锈钢点腐蚀综述 [J]. 石油化工腐蚀与防护, 2009, 26(6): 1
49 Chaves R, Costa I, Melo H G D, et al. Evaluation of selective corrosion in UNS S31803 duplex stainless steel with electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1842
doi: 10.1016/j.electacta.2005.02.105
50 Merello R, Botana F J, Botella J, et al. Determination of the weaker phase in the pitting corrosion of non-standard low-Ni high-Mn-N duplex stainless steels [J]. Mater. Corros., 2004, 55: 95
doi: 10.1002/maco.200303694
51 Gao X D, Li J K, Ren X P, et al. Effect of solid solution temperature on microstructure and microhardness of 2205 duplex stainless steel [J]. Heat Treat. Met., 2021, 46(1): 7
高晓丹, 李晶琨, 任学平 等. 固溶温度对2205双相不锈钢组织和硬度的影响 [J]. 金属热处理, 2021, 46(1): 7
52 Xu Z Q. Study on corrosion mechanism and corrosion protection countermeasures for acetic acid rectifying tower in polyvinyl alcohol plant [J]. Petro-Chem. Equip. Technol., 2008, 29(5): 46
许志强. PVA车间醋酸塔腐蚀机理研究及防护对策 [J]. 石油化工设备技术, 2008, 29(5): 46
53 Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
doi: 10.1016/j.corsci.2015.11.003
54 Jiang W. Influnce of technological parameter on corrosion for 2205DSS and TA2 in brine and establishment of mathematical model [D]. Zigong: Sichuan University of Science & Engineering, 2008
蒋伟. 工艺参数对2205DSS与TA2在卤水中的腐蚀影响及其数学模型的建立 [D]. 自贡: 四川理工学院, 2008
55 Yu C Y. Discussion of crevice corrosion occurred in chemical titanium equipment [J]. Process Equip. Piping, 2010, 47(5): 61
余存烨. 钛制化工设备缝隙腐蚀探讨 [J]. 化工设备与管道, 2010, 47(5): 61
56 Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
57 Al-Malahy K S E, Hodgkiess T. Comparative studies of the seawater corrosion behaviour of a range of materials [J]. Desalination, 2003, 158: 35
doi: 10.1016/S0011-9164(03)00430-2
58 Singh V B, Gupta A. The electrochemical corrosion and passivation behaviour of Monel (400) in concentrated acids and their mixtures [J]. J. Mater. Sci., 2001, 36: 1433
doi: 10.1023/A:1017584326909
59 Lu Y L, Liu J X, Li X K, et al. Hot deformation behavior of Hastelly C276 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22, suppl.1: s84
60 Ma G Y, Wu D J, Guo D M. Segregation Characteristics of pulsed laser butt welding of Hastelloy C-276 [J]. Metall. Mater. Trans., 2011, 42A: 3853
61 Jiao S Y, Zhu G N, Dong J X, et al. Garbide evolution and Mo depletion law in hastelloy C-276 [J]. J. Mater. Eng., 2011, 39(1): 47
焦少阳, 朱冠妮, 董建新 等. Hastelloy C-276中碳化物析出及晶界贫Mo规律研究 [J]. 材料工程, 2011, 39(1): 47
62 Wu D J, Fan C, Liu S B, et al. Corrosion performance of laser welding on dissimilar materials hastelloy C-276/316L [J]. Chin. J. Nonferrous Met., 2014, 24: 441
doi: 10.1016/S1003-6326(14)63080-6
吴东江, 范聪, 刘士博 等. Hastelloy C-276/316L激光异质焊焊缝腐蚀性能 [J]. 中国有色金属学报, 2014, 24: 441
63 Zheng G H. Corrosion in the production of polyvinyl alcohol and protection technologies [J]. Petrochem. Corros. Prot., 2002, 19(3): 6
郑国汉. 聚乙烯醇生产过程中的腐蚀与防护技术 [J]. 石油化工腐蚀与防护, 2002, 19(3): 6
64 Li W. Discussion on corrosion status and anti-corrosion of PTA plant in petrochemical industry [J]. China Plant Eng., 2009, (9): 32
李旺. 石化PTA装置腐蚀现状与防腐探讨 [J]. 中国设备工程, 2009, (9): 32
65 Zhang Y M, Li X D, Li M S, et al. Investigation on corrosion of Yizheng chemical fiber [J]. Corros. Sci. Prot. Technol., 2000, 12: 364
张亚明, 李晓东, 李美栓 等. 仪征化纤化工厂腐蚀情况调查 [J]. 腐蚀科学与防护技术, 2000, 12: 364
66 Wu X B, Yu Z G. Characteristics and protection of local corrosion on PTA reactors [J]. CFHI Technol., 2013, (3): 22
吴学彬, 于志刚. PTA反应器的局部腐蚀特点及防护方法 [J]. 一重技术, 2013, (3): 22
67 Yu C Y, Lin H H. Material selection and corrosion analysis of acetic acid equipment in Shanghai Petrochemical Plant [J]. Petrochem. Technol. Jinshan, 1985, (2): 70
余存烨, 林宏华. 上海石化总厂醋酸设备选材及腐蚀分析 [J]. 金山石油化工化纤技术, 1985, (2): 70
68 Miao Y Y, Sun Y E. Corrosion analysis and anticorrosion discussion of PTA plant [J]. Chem. Enterp. Manage., 2016, (5): 193
苗媛媛, 孙亚娥. PTA装置腐蚀分析及对策探讨 [J]. 化工管理, 2016, (5): 193
69 Gao X, Tang J L, Zuo Y, et al. The electroplated palladium-copper alloy film on 316L stainless steel and its corrosion resistance in mixture of acetic and formic acids [J]. Corros. Sci., 2009, 51: 1822
doi: 10.1016/j.corsci.2009.05.008
[1] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[3] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[4] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[5] QIU Li, LI Xianghong, LEI Ran, DENG Shuduan. Inhibition Performance of Coconut Diethanolamide on Cold Rolled Steel in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2023, 43(2): 301-311.
[6] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[7] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[8] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[9] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[10] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[11] WANG Lizi, LI Xianghong. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[12] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[13] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[14] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
No Suggested Reading articles found!