Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 765-770    DOI: 10.11902/1005.4537.2022.100
Current Issue | Archive | Adv Search |
Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels
LV Yingxi()
Shanxi Mechanical and Electrical Design and Research Institute Co. Ltd., Taiyuan 030009, China
Download:  HTML  PDF(6619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The increase of Mo content can improve the corrosion resistance of austenitic stainless steel. In this paper, the corrosion behavior of four austenitic stainless steels 316L, 904L, S31254 and S31254-B with different Mo content in 10%NaCl solution has been comparatively examined. The effect of solution treatment and low temperature aging treatment on the corrosion resistance of steels was compared. The microstructure, corrosion resistance and surface corrosion morphology of the four stainless steels were characterized by means of scanning electron microscope, electrochemical scanning polarization curves and electrochemical impedance spectroscope. The results show that the four stainless steels present different corrosion performance in 10%NaCl solution, their corrosion resistance can be ranked as follows: low temperature aging state>solid solution state for all steels; whilst S31254-B>S31254>904L>316L. The increase of Mo content, the addition of B and the aging treatment at low temperature can improve the corrosion resistance of the steels. Meanwhile, B can promote the formation of Cr- and Mo-rich oxides in the outer layer of passivation film, which makes the surface of passivation film much compact, and the lean-Cr and -Mo regions at grain boundaries can be slowed down, therewith the corrosion resistance of the steels can be improved significantly.

Key words:  Austenitic stainless steel      corrosion resistance      electrochemical corrosion      Mo     
Received:  09 April 2022     
ZTFLH:  TF764  
Corresponding Authors:  LV Yingxi     E-mail:  LYX6746@163.com
About author:  LV Yingxi, E-mail: LYX6746@163.com

Cite this article: 

LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 765-770.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.100     OR     https://www.jcscp.org/EN/Y2022/V42/I5/765

SampleCSiMnPSCrNiMoCuNB
S31254-B0.0140.840.980.0120.00120.2318.056.230.850.2420.004
S312540.0120.610.930.0100.00220.1718.156.030.720.212---
904L0.0110.521.290.0180.00120.1024.314.421.420.06---
316L0.0150.541.740.0420.00216.3010.312.45---------
Table 1  Chemical compositions of four stainless steel (mass fraction / %)
Fig.1  Micrographs of the solution-treated sample of 316L (a), 904L (b), S31254 (c), S31254-B (d) stainless steel
Fig.2  Micrographs of the aging-treated sample of 316L (a), 904L (b), S31254 (c), S31254-B (d) stainless steel
Fig.3  EDS of grain boundary region of S31254-B stainless steel after low temperature aging at 410 ℃
Fig.4  Potentiodynamic polarization curves of solution-treated sample of 316L, 904L, S31254, S31254-B stainless steel (a), aging-treated at 410 ℃ sample of 316L, 904L, S31254, S31254-B stainless steel (b), solution-treated and aging-treated at 410 ℃ sample of 316L, 904 stainless steel (c), solution-treated and aging-treated at 410 ℃ sample of 31254-B, S31254 stainless steel (d) in 10%NaCl solution
Heat treatmentIcorr / 107 A·cm-2Ecorr / VSCEEpit / VSCE
Solution-treated of 316L stainless steel1.058-0.3300.431
Aging-treated at 410 ℃ of 316Lstainless steel1.183-0.3200.450
Solution-treated of 904L stainless steel0.833-0.3041.014
Aging-treated at 410 ℃ of 904L stainless steel0.877-0.3191.028
Solution-treated of S31254 stainless steel0.910-0.3001.092
Aging-treated at 410 ℃ of S31254 stainless steel1.024-0.2981.096
Solution-treated of S31254-B stainless steel0.617-0.2121.125
Aging-treated at 410 ℃ of S31254-B stainless steel0.536-0.1111.232
Table 2  Electrochemical parameters of potentiodynamic polarization for 316L, 904L, S31254 and S31254-B stainless steel
Fig.5  Impedance spectroscopy of solution-treated sample of 316L, 904L, S31254, S31254-B stainless stain (a), aging-treated at 410 ℃ sample of 316L, 904L, S31254, S31254-B (b), solution-treated and aging-treated at 410 ℃ sample of 31254-B, S31254 (c) and solution-treated and aging-treated at 410 ℃ sample of 316L, 904 stainless steel (d) in 10%NaCl solution
Fig.6  Surface corrosion morphologies of the solution-treated sample of 316L (a), 904L (b), S31254 (c), S31254-B (d) stainless steel after potentiodynamic polarization
Fig.7  Surface corrosion morphologies of the aging-treated sample of 316L (a), 904L (b), S31254 (c), S31254-B (d) stainless steel after potentiodynamic polarization
1 Shoemaker L E, Crum J R. Experience in effective application of metallic materials for construction of FGD systems [R]. Huntington: Special Metals, 2010
2 Herda W, Rockel M, Grossmann G, et al. High specialty stainless steels and nickel alloys for FGD dampers [R]. Houston: NACE International, 1997
3 El-Ghonemy A M K. RETRACTED: Future sustainable water desalination technologies for the Saudi Arabia: A review [J]. Renew. Sust. Energ. Rev., 2012, 16: 6566
doi: 10.1016/j.rser.2012.07.026
4 Cao J R, Zhao P. Selection of engineering material of distillation of seallater with low temperature and multi-effect function [J]. Electr. Power Surv. Des., 2008, (6): 50
曹军瑞, 赵鹏. 低温多效海水淡化工程材料的选用 [J]. 电力勘测设计, 2008, (6): 50
5 Olsson J. Stainless steels for desalination plants [J]. Desalination, 2005, 183: 217
doi: 10.1016/j.desal.2005.02.050
6 Tian J J, Li Z G, Qu Z. Analyses and protection of seawater cooling system in offshore oil platform [J]. Corros. Prot., 2007, 28: 476
田俊杰, 李振国, 曲政. 某石油平台海水冷却系统腐蚀分析与防护方法 [J]. 腐蚀与防护, 2007, 28: 476
7 Wang C G, Zhao L, Wu L P, et al. Pitting corrosion of several super stainless steels in a simulated water environment of low temperature multi effect desalination unit [J]. Corros. Sci. Prot. Technol., 2018, 30: 339
王长罡, 赵林, 伍立坪 等. 几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究 [J]. 腐蚀科学与防护技术, 2018, 30: 339
8 Li J, Zong Y W, Jin Z H, et al. Corrosion behavior of several metal materials in blast furnace gas condensates [J]. Mater. Prot., 2016, 49(2): 69
李嘉, 宗仰炜, 金志浩 等. 几种金属材料在高炉煤气管道冷凝液中的电化学腐蚀行为 [J]. 材料保护, 2016, 49(2): 69
9 de Micheli L, Andrade A H P, Barbosa C A, et al. Electrochemical studies of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in phosphoric acid media in absence and presence of chloride ions [J]. Br. Corros. J., 1999, 34: 67
doi: 10.1179/bcj.1999.34.1.67
10 Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
doi: 10.2355/isijinternational.42.1150
11 Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
12 Bharasi N S, Pujar M G, Nirmal S, et al. Comparison of SCC behavior of 304L stainless steels with and without boron addition in acidic chloride environment [J]. J. Mater. Eng. Perform., 2016, 25: 2786
doi: 10.1007/s11665-016-2130-4
13 Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of Super304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
14 Yamamoto S, Kobayashi Y. Effect of Ni and B on the hot workability of high Mo austenitic stainless steels [J]. Iron Steel Inst. Jpn, 1992, 78: 1609
15 Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
doi: 10.1016/j.matdes.2016.08.048
16 Hu S, Mao Y Z, Liu X B, et al. Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging [J]. Corros. Sci., 2020, 166: 108420
doi: 10.1016/j.corsci.2019.108420
17 Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
18 Zou G B, Shi W, Xiang S, et al. Corrosion behavior of 904L austenitic stainless steel in hydrofluoric acid [J]. RSC Adv., 2018, 8: 2811
doi: 10.1039/C7RA12453H
19 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
20 Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
21 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
22 Luo H, Su H Z, Dong C F, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells [J]. J. Alloy. Compd., 2016, 686: 216
doi: 10.1016/j.jallcom.2016.06.013
23 Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493
24 Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
25 Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion properties of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, in press
包晔峰, 武竹雨, 陈哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层电化学腐蚀与点蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 待出版
26 Wang Y T, Zhao W P, Wei X T, et al. Waste incineration power plant piping chlorine corrosion of high temperature nickel base alloy coating performance study [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站管道镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
[1] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[2] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[3] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[4] QU Zuopeng, TIAN Xinli, WANG Yongtian, ZHAO Yifan, WANG Lei, ZHANG Beibei, WANG Haijun. Research Progress on Corrosion Behavior and Key Influencing Factors for Structural Materials of Waste Power Plant Boiler[J]. 中国腐蚀与防护学报, 2022, 42(5): 839-844.
[5] WANG Xinyu, HUANG Feng, LIU Haixia, YUAN Wei, LIU Jing. Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2022, 42(5): 826-832.
[6] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[7] HU Xiongxin, ZHANG Xian, LIU Jing, WU Kaiming, LIN An. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[8] GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[9] LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing, MENG Guozhe. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[10] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[11] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[12] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[13] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[14] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[15] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
No Suggested Reading articles found!