|
|
Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels |
LV Yingxi( ) |
Shanxi Mechanical and Electrical Design and Research Institute Co. Ltd., Taiyuan 030009, China |
|
|
Abstract The increase of Mo content can improve the corrosion resistance of austenitic stainless steel. In this paper, the corrosion behavior of four austenitic stainless steels 316L, 904L, S31254 and S31254-B with different Mo content in 10%NaCl solution has been comparatively examined. The effect of solution treatment and low temperature aging treatment on the corrosion resistance of steels was compared. The microstructure, corrosion resistance and surface corrosion morphology of the four stainless steels were characterized by means of scanning electron microscope, electrochemical scanning polarization curves and electrochemical impedance spectroscope. The results show that the four stainless steels present different corrosion performance in 10%NaCl solution, their corrosion resistance can be ranked as follows: low temperature aging state>solid solution state for all steels; whilst S31254-B>S31254>904L>316L. The increase of Mo content, the addition of B and the aging treatment at low temperature can improve the corrosion resistance of the steels. Meanwhile, B can promote the formation of Cr- and Mo-rich oxides in the outer layer of passivation film, which makes the surface of passivation film much compact, and the lean-Cr and -Mo regions at grain boundaries can be slowed down, therewith the corrosion resistance of the steels can be improved significantly.
|
Received: 09 April 2022
|
|
Corresponding Authors:
LV Yingxi
E-mail: LYX6746@163.com
|
About author: LV Yingxi, E-mail: LYX6746@163.com
|
1 |
Shoemaker L E, Crum J R. Experience in effective application of metallic materials for construction of FGD systems [R]. Huntington: Special Metals, 2010
|
2 |
Herda W, Rockel M, Grossmann G, et al. High specialty stainless steels and nickel alloys for FGD dampers [R]. Houston: NACE International, 1997
|
3 |
El-Ghonemy A M K. RETRACTED: Future sustainable water desalination technologies for the Saudi Arabia: A review [J]. Renew. Sust. Energ. Rev., 2012, 16: 6566
doi: 10.1016/j.rser.2012.07.026
|
4 |
Cao J R, Zhao P. Selection of engineering material of distillation of seallater with low temperature and multi-effect function [J]. Electr. Power Surv. Des., 2008, (6): 50
|
|
曹军瑞, 赵鹏. 低温多效海水淡化工程材料的选用 [J]. 电力勘测设计, 2008, (6): 50
|
5 |
Olsson J. Stainless steels for desalination plants [J]. Desalination, 2005, 183: 217
doi: 10.1016/j.desal.2005.02.050
|
6 |
Tian J J, Li Z G, Qu Z. Analyses and protection of seawater cooling system in offshore oil platform [J]. Corros. Prot., 2007, 28: 476
|
|
田俊杰, 李振国, 曲政. 某石油平台海水冷却系统腐蚀分析与防护方法 [J]. 腐蚀与防护, 2007, 28: 476
|
7 |
Wang C G, Zhao L, Wu L P, et al. Pitting corrosion of several super stainless steels in a simulated water environment of low temperature multi effect desalination unit [J]. Corros. Sci. Prot. Technol., 2018, 30: 339
|
|
王长罡, 赵林, 伍立坪 等. 几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究 [J]. 腐蚀科学与防护技术, 2018, 30: 339
|
8 |
Li J, Zong Y W, Jin Z H, et al. Corrosion behavior of several metal materials in blast furnace gas condensates [J]. Mater. Prot., 2016, 49(2): 69
|
|
李嘉, 宗仰炜, 金志浩 等. 几种金属材料在高炉煤气管道冷凝液中的电化学腐蚀行为 [J]. 材料保护, 2016, 49(2): 69
|
9 |
de Micheli L, Andrade A H P, Barbosa C A, et al. Electrochemical studies of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in phosphoric acid media in absence and presence of chloride ions [J]. Br. Corros. J., 1999, 34: 67
doi: 10.1179/bcj.1999.34.1.67
|
10 |
Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
doi: 10.2355/isijinternational.42.1150
|
11 |
Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
|
12 |
Bharasi N S, Pujar M G, Nirmal S, et al. Comparison of SCC behavior of 304L stainless steels with and without boron addition in acidic chloride environment [J]. J. Mater. Eng. Perform., 2016, 25: 2786
doi: 10.1007/s11665-016-2130-4
|
13 |
Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of Super304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
|
14 |
Yamamoto S, Kobayashi Y. Effect of Ni and B on the hot workability of high Mo austenitic stainless steels [J]. Iron Steel Inst. Jpn, 1992, 78: 1609
|
15 |
Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
doi: 10.1016/j.matdes.2016.08.048
|
16 |
Hu S, Mao Y Z, Liu X B, et al. Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging [J]. Corros. Sci., 2020, 166: 108420
doi: 10.1016/j.corsci.2019.108420
|
17 |
Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
|
18 |
Zou G B, Shi W, Xiang S, et al. Corrosion behavior of 904L austenitic stainless steel in hydrofluoric acid [J]. RSC Adv., 2018, 8: 2811
doi: 10.1039/C7RA12453H
|
19 |
Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
|
20 |
Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
|
21 |
Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
|
22 |
Luo H, Su H Z, Dong C F, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells [J]. J. Alloy. Compd., 2016, 686: 216
doi: 10.1016/j.jallcom.2016.06.013
|
23 |
Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
|
|
赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493
|
24 |
Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
|
|
纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
|
25 |
Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion properties of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, in press
|
|
包晔峰, 武竹雨, 陈哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层电化学腐蚀与点蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 待出版
|
26 |
Wang Y T, Zhao W P, Wei X T, et al. Waste incineration power plant piping chlorine corrosion of high temperature nickel base alloy coating performance study [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
|
|
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站管道镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|