|
|
Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating |
LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing( ), MENG Guozhe |
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China |
|
|
Abstract Halloysite nanotubes (HNTs) are natural aluminosilicate nanomaterials with unique hollow tubular structure, large specific surface area and high reactivity. They exhibit more and more significant application value as a nano-carrier in the field of intelligent anti-corrosion coatings. In this paper, the structure, and properties of HNTs are briefly described, the feasibility of application of HNTs for intelligent coatings is analyzed, the mechanism of surface modification of HNTs and the factors affecting the carrying capacity of corrosion inhibitor are described, the application research progress of the modified HNTs as self-repairing unit for intelligent anticorrosion coating is also analyzed. Simultaneously, the functional improvement of HNTs modified intelligent coating is prospected.
|
Received: 12 August 2021
|
|
Fund: Science and Technology Projects of Guangzhou(202102020468);Joint Funds of National Natural Science Foundation of China(U20A20233);Fundamental Research Funds for the Central Universities (Sun Yat-sen University, 2021qntd13) |
Corresponding Authors:
LEI Bing
E-mail: leibing@mail.sysu.edu.cn
|
About author: LEI Bing, E-mail: leibing@mail.sysu.edu.cn
|
1 |
Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
|
|
侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
|
2 |
Han E-H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33: 65
|
|
韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, 33: 65
|
3 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
|
栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
4 |
Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
|
|
王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
|
5 |
Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
|
|
曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
|
6 |
Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
|
|
赵增元, 王佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116
|
7 |
Wang G R, Shao Y W, Wang Y Q, et al. Effect of applied cathodic protection potential on cathodic delamination of damaged epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 235
|
|
王贵容, 邵亚薇, 王艳秋 等. 阴极保护电位对破损环氧涂层阴极剥离的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 235
|
8 |
Yang B Y, Wang Z W, Ma Y L. Research progress of layered double hydroxides in corrosion protection of metallic materials [J]. Surf. Technol., 2020, 49(12): 137
|
|
杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展 [J]. 表面技术, 2020, 49(12): 137
|
9 |
Pan M Q, Wang L T, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. China, 2018, 37: 19
|
|
潘梦秋, 王伦滔, 丁璇 等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37: 19
|
10 |
Zhang Y, Fan W J, Zhang T F, et al. Review of intelligent self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
|
|
张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299
|
11 |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
|
高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
|
12 |
Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
|
|
刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
|
13 |
Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
|
|
文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309
|
14 |
Liu T, Ma L W, Wang X, et al. Self-healing corrosion protective coatings based on micro/nanocarriers: a review [J]. Corros. Commun., 2021, 1: 18
doi: 10.1016/j.corcom.2021.05.004
|
15 |
Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
|
|
叶三男, 王培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
|
16 |
Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Del., 2016, 13: 977
doi: 10.1517/17425247.2016.1169271
|
17 |
Papoulis D. Halloysite based nanocomposites and photocatalysis: a review [J]. Appl. Clay Sci., 2019, 168: 164
doi: 10.1016/j.clay.2018.11.009
|
18 |
Bertolino V, Cavallaro G, Milioto S, et al. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials [J]. Carbohydr. Polym., 2020, 245: 116502
doi: 10.1016/j.carbpol.2020.116502
|
19 |
Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem., 2008, 112C: 958
|
20 |
Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [J]. J. Am. Chem. Soc., 2012, 134: 1853
doi: 10.1021/ja210258y
|
21 |
Poornima V P, El-Gawady Y M H, Al-Maadeed M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating [J]. Ind. Eng. Chem. Res., 2016, 55: 11186
doi: 10.1021/acs.iecr.6b02736
|
22 |
Asadi N, Naderi R, Mahdavian M. Synergistic effect of imidazole dicarboxylic acid and Zn2+ simultaneously doped in halloysite nanotubes to improve protection of epoxy ester coating [J]. Prog. Org. Coat., 2019, 132: 29
|
23 |
Khan A, Hassanein A, Habib S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection [J]. ACS Appl. Mater. Interfaces, 2020, 12: 37571
doi: 10.1021/acsami.0c08953
|
24 |
Yuan P, Tan D Y, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects [J]. Appl. Clay Sci., 2015, 112/113: 75
|
25 |
Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [J]. Prog. Polym. Sci., 2014, 39: 1498
doi: 10.1016/j.progpolymsci.2014.04.004
|
26 |
Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds [J]. Adv. Mater., 2016, 28: 1227
doi: 10.1002/adma.201502341
|
27 |
White R D, Bavykin D V, Walsh F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions [J]. Nanotechnology, 2012, 23: 065705
|
28 |
Falcón J M, Sawczen T, Aoki I V. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings [J]. Front. Mater., 2015, 2: 69
|
29 |
Abdullayev E, Joshi A, Wei W B, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide [J]. ACS Nano, 2012, 6: 7216
doi: 10.1021/nn302328x
pmid: 22838310
|
30 |
Zhang A B, Pan L, Zhang H Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite [J]. Colloids Surf., 2012, 396A: 182
|
31 |
Yu D, Wang J, Hu W, et al. Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer [J]. Mater. Des., 2017, 129: 103
doi: 10.1016/j.matdes.2017.05.033
|
32 |
Shu Z, Chen Y, Zhou J, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications [J]. Appl. Clay Sci., 2015, 112/113: 17
|
33 |
Liu M X, Guo B C, Du M L, et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites [J]. J. Polym. Res., 2008, 15: 205
doi: 10.1007/s10965-007-9160-4
|
34 |
Li C P, Liu J G, Qu X Z, et al. A general synthesis approach toward halloysite-based composite nanotube [J]. J. Appl. Polym. Sci., 2009, 112: 2647
doi: 10.1002/app.29652
|
35 |
Yuan P, Southon P, Liu Z W, et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane [J]. J. Phys. Chem., 2008, 112C: 15742
|
36 |
Luo P, Zhang J S, Zhang B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal [J]. Ind. Eng. Chem. Res., 2011, 50: 10246
doi: 10.1021/ie200951n
|
37 |
Zhang J H, Zhang D H, Zhang A Q, et al. Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method [J]. J. Reinf. Plast. Compos., 2013, 32: 713
doi: 10.1177/0731684412472745
|
38 |
Albdiry M T, Yousif B F. Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes [J]. Mater. Des., 2013, 48: 68
doi: 10.1016/j.matdes.2012.08.035
|
39 |
Abdullayev E, Abbasov V, Tursunbayeva A, et al. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4464
doi: 10.1021/am400936m
|
40 |
Cui M M, Njoku D I, Li B W, et al. Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: the responses of smart microcapsules to corrosive entities [J]. Corros. Commun., 2021, 1: 1
doi: 10.1016/j.corcom.2021.06.001
|
41 |
Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1437
doi: 10.1021/am9002028
|
42 |
Joshi A, Abdullayev E, Vasiliev A, et al. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors [J]. Langmuir, 2013, 29: 7439
doi: 10.1021/la3044973
|
43 |
Adsul S H, Bagale U D, Sonawane S H, et al. Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D [J]. J. Magnes. Alloys, 2021, 9: 202
|
44 |
ShchukinA E, Shchukin D, Grigoriev D. Halloysites and mesoporous silica as inhibitor nanocontainers for feedback active powder coatings [J]. Prog. Org. Coat., 2018, 123: 384
|
45 |
Wang M, Wang J H, Hu W B. Preparation and corrosion behavior of Cu-8-HQ@HNTs/epoxy coating [J]. Prog. Org. Coat., 2020, 139: 105434
|
46 |
Asadi N, Naderi R, Mahdavian M. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating [J]. Corros. Sci., 2019, 151: 69
doi: 10.1016/j.corsci.2019.02.022
|
47 |
Chen X J, Hu D C, Zhang Z L, et al. In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating [J]. J. Alloy. Compd., 2019, 811: 151986
doi: 10.1016/j.jallcom.2019.151986
|
48 |
Manasa S, Jyothirmayi A, Siva T, et al. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356.0 [J]. J. Alloy. Compd., 2017, 726: 969
doi: 10.1016/j.jallcom.2017.08.037
|
49 |
Zahidah K A, Kakooei S, Ismail M C, et al. Halloysite nanotubes as nanocontainer for smart coating application: a review [J]. Prog. Org. Coat., 2017, 111: 175
|
50 |
Thanawala K, Khanna A S, Raman R K S, et al. Smart anti-corrosive self-healing coatings using halloysite nanotubes as host for entrapment of corrosion inhibitors [A]. Proceedings of the Australasian Corrosion Association Annual Conference: Corrosion and Prevention 2015 [C]. Adelaide, Australia, 2015
|
51 |
Molaei A, Amadeh A, Yari M, et al. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate [J]. Mater. Sci. Eng., 2016, 59C: 740
|
52 |
Sun M, Yerokhin A, Bychkova M Y, et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy [J]. Corros. Sci., 2016, 111: 753
doi: 10.1016/j.corsci.2016.06.016
|
53 |
Njoku D I, Cui M M, Xiao H G, et al. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques [J]. Sci. Rep., 2017, 7: 15597
doi: 10.1038/s41598-017-15845-0
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|