Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 523-530    DOI: 10.11902/1005.4537.2021.194
Current Issue | Archive | Adv Search |
Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating
LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing(), MENG Guozhe
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
Download:  HTML  PDF(3241KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Halloysite nanotubes (HNTs) are natural aluminosilicate nanomaterials with unique hollow tubular structure, large specific surface area and high reactivity. They exhibit more and more significant application value as a nano-carrier in the field of intelligent anti-corrosion coatings. In this paper, the structure, and properties of HNTs are briefly described, the feasibility of application of HNTs for intelligent coatings is analyzed, the mechanism of surface modification of HNTs and the factors affecting the carrying capacity of corrosion inhibitor are described, the application research progress of the modified HNTs as self-repairing unit for intelligent anticorrosion coating is also analyzed. Simultaneously, the functional improvement of HNTs modified intelligent coating is prospected.

Key words:  Halloysite nanotubes      load modification      self-repairing coating     
Received:  12 August 2021     
ZTFLH:  TG172  
Fund: Science and Technology Projects of Guangzhou(202102020468);Joint Funds of National Natural Science Foundation of China(U20A20233);Fundamental Research Funds for the Central Universities (Sun Yat-sen University, 2021qntd13)
Corresponding Authors:  LEI Bing     E-mail:  leibing@mail.sysu.edu.cn
About author:  LEI Bing, E-mail: leibing@mail.sysu.edu.cn

Cite this article: 

LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing, MENG Guozhe. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 523-530.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.194     OR     https://www.jcscp.org/EN/Y2022/V42/I4/523

Chemical formulaAl2O3·2SiO2·nH2O
Length0.2~2 μm
Outer diameter40~70 nm
Inner diameter15~40 nm
Aspect ratio (L/D)10~50
Elastic modulus (theoretical value)140 GPa (230~340 GPa)
Mean particle size in aqueous solution143 nm
Particle size range in aqueous solution50~400 nm
BET surface area22.1~81.6 m2/g
Pore space14~46.8%
Lumen space11~39%
Density2.14~2.59 g/cm3
Average pore size7.97~10.02 nm
Structural water release temperature400~600 ℃
Table 1  Typical characteristic parameters of HNTs[25]
Fig.1  Schematic illustrations of transformation of HNTs in strong acid (right) and strong alkaline (left) conditions[27]
Fig.2  Enhancement of the lumen by acid etching of alumina in the inner layer of HNTs[28]
SilaneChemical
γ-Glycidoxypropyltrimethoxysilane (GPTS)[33]
3-Aminopropyltrimethoxysilane (APS)[34]
(3-Aminopropyl) triethoxysilane (APTES)[35]
[3-(2-Aminoethylamino) propyl]trimethoxysilane (AEAPS)[20,36]
3-(Trimethoxysilyl) propyl methacrylate (MAPTS)[37]
Vinyltrimethoxysilane (VTMS)[38]
Table 2  Chemical constructions of silanes used for modification of HNTs
Fig.3  Process steps of loading inhibitor on HNTs in vacuum
Fig.4  Schematic illustrations of layer-by-layer self-assembly on the surface of HNTs (a) and illustration of the formation of end stopper in Cu2+ treating process (b)[23,49]
Fig.5  Production process flow of smart anti-corrosion coating containing corrosion inhibitor-loaded HNTs
SubstrateMatters loaded in HNTsCoating typeTime and literature
AA2024-T3AlMBTSolute-gel hybrid coating2008[19]
110Cu, 2024AlBTASolute-gel hybrid coating2009[41]
110CuBTA, MBI, MBTAcrylate coating、Polyaminoester coating2013[39]
Carbon steel, Al-alloy8-HQPowder epoxy resin coating2013[41]
Carbon steelDodecyl amineAlkyd paint2015[30]
Carbon steelBTAEpoxy varnish2015[50]
Ti-alloyCTSCTS/HNTs electrodeposition coating2016[51]
AM50 Mg-alloyBTAMicroarc oxidation coating2016[52]
Carbon steelMBT, BTAEpoxy coating2017[53]
Carbon steelZn2+Epoxy coating2019[46]
2024Al2-MBTEpoxy coating2021[40]
Table 3  Summary of typical self-healing coatings containing corrosion inhibitor-loaded HNTs
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Han E-H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33: 65
韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, 33: 65
3 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
4 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
5 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
6 Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
赵增元, 王佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116
7 Wang G R, Shao Y W, Wang Y Q, et al. Effect of applied cathodic protection potential on cathodic delamination of damaged epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 235
王贵容, 邵亚薇, 王艳秋 等. 阴极保护电位对破损环氧涂层阴极剥离的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 235
8 Yang B Y, Wang Z W, Ma Y L. Research progress of layered double hydroxides in corrosion protection of metallic materials [J]. Surf. Technol., 2020, 49(12): 137
杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展 [J]. 表面技术, 2020, 49(12): 137
9 Pan M Q, Wang L T, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. China, 2018, 37: 19
潘梦秋, 王伦滔, 丁璇 等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37: 19
10 Zhang Y, Fan W J, Zhang T F, et al. Review of intelligent self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299
11 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
12 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
13 Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309
14 Liu T, Ma L W, Wang X, et al. Self-healing corrosion protective coatings based on micro/nanocarriers: a review [J]. Corros. Commun., 2021, 1: 18
doi: 10.1016/j.corcom.2021.05.004
15 Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
叶三男, 王培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
16 Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Del., 2016, 13: 977
doi: 10.1517/17425247.2016.1169271
17 Papoulis D. Halloysite based nanocomposites and photocatalysis: a review [J]. Appl. Clay Sci., 2019, 168: 164
doi: 10.1016/j.clay.2018.11.009
18 Bertolino V, Cavallaro G, Milioto S, et al. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials [J]. Carbohydr. Polym., 2020, 245: 116502
doi: 10.1016/j.carbpol.2020.116502
19 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem., 2008, 112C: 958
20 Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [J]. J. Am. Chem. Soc., 2012, 134: 1853
doi: 10.1021/ja210258y
21 Poornima V P, El-Gawady Y M H, Al-Maadeed M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating [J]. Ind. Eng. Chem. Res., 2016, 55: 11186
doi: 10.1021/acs.iecr.6b02736
22 Asadi N, Naderi R, Mahdavian M. Synergistic effect of imidazole dicarboxylic acid and Zn2+ simultaneously doped in halloysite nanotubes to improve protection of epoxy ester coating [J]. Prog. Org. Coat., 2019, 132: 29
23 Khan A, Hassanein A, Habib S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection [J]. ACS Appl. Mater. Interfaces, 2020, 12: 37571
doi: 10.1021/acsami.0c08953
24 Yuan P, Tan D Y, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects [J]. Appl. Clay Sci., 2015, 112/113: 75
25 Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [J]. Prog. Polym. Sci., 2014, 39: 1498
doi: 10.1016/j.progpolymsci.2014.04.004
26 Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds [J]. Adv. Mater., 2016, 28: 1227
doi: 10.1002/adma.201502341
27 White R D, Bavykin D V, Walsh F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions [J]. Nanotechnology, 2012, 23: 065705
28 Falcón J M, Sawczen T, Aoki I V. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings [J]. Front. Mater., 2015, 2: 69
29 Abdullayev E, Joshi A, Wei W B, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide [J]. ACS Nano, 2012, 6: 7216
doi: 10.1021/nn302328x pmid: 22838310
30 Zhang A B, Pan L, Zhang H Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite [J]. Colloids Surf., 2012, 396A: 182
31 Yu D, Wang J, Hu W, et al. Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer [J]. Mater. Des., 2017, 129: 103
doi: 10.1016/j.matdes.2017.05.033
32 Shu Z, Chen Y, Zhou J, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications [J]. Appl. Clay Sci., 2015, 112/113: 17
33 Liu M X, Guo B C, Du M L, et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites [J]. J. Polym. Res., 2008, 15: 205
doi: 10.1007/s10965-007-9160-4
34 Li C P, Liu J G, Qu X Z, et al. A general synthesis approach toward halloysite-based composite nanotube [J]. J. Appl. Polym. Sci., 2009, 112: 2647
doi: 10.1002/app.29652
35 Yuan P, Southon P, Liu Z W, et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane [J]. J. Phys. Chem., 2008, 112C: 15742
36 Luo P, Zhang J S, Zhang B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal [J]. Ind. Eng. Chem. Res., 2011, 50: 10246
doi: 10.1021/ie200951n
37 Zhang J H, Zhang D H, Zhang A Q, et al. Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method [J]. J. Reinf. Plast. Compos., 2013, 32: 713
doi: 10.1177/0731684412472745
38 Albdiry M T, Yousif B F. Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes [J]. Mater. Des., 2013, 48: 68
doi: 10.1016/j.matdes.2012.08.035
39 Abdullayev E, Abbasov V, Tursunbayeva A, et al. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4464
doi: 10.1021/am400936m
40 Cui M M, Njoku D I, Li B W, et al. Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: the responses of smart microcapsules to corrosive entities [J]. Corros. Commun., 2021, 1: 1
doi: 10.1016/j.corcom.2021.06.001
41 Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1437
doi: 10.1021/am9002028
42 Joshi A, Abdullayev E, Vasiliev A, et al. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors [J]. Langmuir, 2013, 29: 7439
doi: 10.1021/la3044973
43 Adsul S H, Bagale U D, Sonawane S H, et al. Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D [J]. J. Magnes. Alloys, 2021, 9: 202
44 ShchukinA E, Shchukin D, Grigoriev D. Halloysites and mesoporous silica as inhibitor nanocontainers for feedback active powder coatings [J]. Prog. Org. Coat., 2018, 123: 384
45 Wang M, Wang J H, Hu W B. Preparation and corrosion behavior of Cu-8-HQ@HNTs/epoxy coating [J]. Prog. Org. Coat., 2020, 139: 105434
46 Asadi N, Naderi R, Mahdavian M. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating [J]. Corros. Sci., 2019, 151: 69
doi: 10.1016/j.corsci.2019.02.022
47 Chen X J, Hu D C, Zhang Z L, et al. In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating [J]. J. Alloy. Compd., 2019, 811: 151986
doi: 10.1016/j.jallcom.2019.151986
48 Manasa S, Jyothirmayi A, Siva T, et al. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356.0 [J]. J. Alloy. Compd., 2017, 726: 969
doi: 10.1016/j.jallcom.2017.08.037
49 Zahidah K A, Kakooei S, Ismail M C, et al. Halloysite nanotubes as nanocontainer for smart coating application: a review [J]. Prog. Org. Coat., 2017, 111: 175
50 Thanawala K, Khanna A S, Raman R K S, et al. Smart anti-corrosive self-healing coatings using halloysite nanotubes as host for entrapment of corrosion inhibitors [A]. Proceedings of the Australasian Corrosion Association Annual Conference: Corrosion and Prevention 2015 [C]. Adelaide, Australia, 2015
51 Molaei A, Amadeh A, Yari M, et al. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate [J]. Mater. Sci. Eng., 2016, 59C: 740
52 Sun M, Yerokhin A, Bychkova M Y, et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy [J]. Corros. Sci., 2016, 111: 753
doi: 10.1016/j.corsci.2016.06.016
53 Njoku D I, Cui M M, Xiao H G, et al. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques [J]. Sci. Rep., 2017, 7: 15597
doi: 10.1038/s41598-017-15845-0
[1] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[2] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[3] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[4] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[5] . Corrosion behavior of typical grounding materials in alkaline soil simulation solution[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[6] . Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[7] . Oxidation Behavior of a Single Crystal Ni-based Superalloy René N5 and its Nanocrystalline Coating at 900 ℃ in O2 and O2 + 20% H2O Environment[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[8] . Study on Corrosion Behavior of 300M ultra high strength steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[9] . Effect of heat treatment process on corrosion resistance of Ti6321 alloy[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[10] WANG Yongxin, WANG Yixuan, CHEN Chunlin, LI Xiang, HE Nankai, LI Jinlong. Preparation of Zr/[Al(Si)N/CrN] Coatings of Stratified Structure and Their Corrosion-wear Performance in Artificial Seawater[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[11] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[12] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[13] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[14] CHENG Yuxian, CAO Chao, JIANG Chengyang, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel/aluminide Composite Coating in a Simulated High Temperature Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 410-416.
[15] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
No Suggested Reading articles found!