Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 759-764    DOI: 10.11902/1005.4537.2021.255
Current Issue | Archive | Adv Search |
Preparation of TiO2 Nanotube Arrays in Composite Electrolytes and Their Photogenerated Cathodic Protection Performance
BAO Chenyu, LI Jianmin, YE Mengying, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(1746KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

At present, TiO2 nanotubes are mainly prepared in single fluorinated electrolyte by secondary anodization. Herewith TiO2 nanotube arrays were prepared in three electrolytes of different fluoride ions (F-, BF4-, F--BF4-) by secondary anodization, aiming to figure out how the preparation processes affect the photogenerated cathodic performance of the prepared TiO2 nanotubes as photoanodes. The morphology, structure, light response ability and photogenerated carrier separation efficiency of the three nanotubes were comparatively examined by means of SEM, XRD, UV-vis DRS and PL, while the photoelectrochemical properties of the three samples were tested in the condition of open and closed visible light. The results showed that TiO2 nanotube arrays prepared in glycol composite electrolyte containing NH4F, NH4BF4 and H2O presented much regular structure, stronger light absorption, higher photogenerated carrier separation efficiency and better photogenerated cathodic protection for 304 stainless steels rather than those prepared in traditional electrolyte of single fluoride salt.

Key words:  secondary anodization      TiO2 nanotube      composite electrolyte      photocathode protection     
Received:  22 September 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China-Shandong Province Joint Fund(U1706221)
Corresponding Authors:  GAO Rongjie     E-mail:  dmh206@ouc.edu.cn
About author:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

Cite this article: 

BAO Chenyu, LI Jianmin, YE Mengying, GAO Rongjie. Preparation of TiO2 Nanotube Arrays in Composite Electrolytes and Their Photogenerated Cathodic Protection Performance. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 759-764.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.255     OR     https://www.jcscp.org/EN/Y2022/V42/I5/759

Fig.1  Surface images (a, c, e) and cross section images (b, d, f) of FTNT (a, b), BFTNT (c, d) and F-BFTNT (e, f)
Fig.2  XRD patterns of FTNT, BFTNT and F-BFTNT
Fig.3  UV-vis diffuse reflectance spectra of FTNT, BFTNT and F-BFTNT
Fig.4  Fluorescence spectra of FTNT, BFTNT and F-BFTNT
Fig.5  Photocurrent density-time curves of FTNT, BFTNT and F-BFTNT in intermittent light
Fig.6  Variations of OCP of FTNT, BFTNT and F-BFTNT coupled with 304SS in intermittent light
Fig.7  Nyquist plots of FTNT, BFTNT and F-BFTNT in simulated sunlight and equivalent circuit diagram
SampleRs / Ω·cm2Cdl / F·cm-2Rct / kΩ·cm2
FTNT12.558.746×10-45.896
BFTNT10.625.970×10-47.156
F-BFTNT10.729.570×10-44.958
Table 1  Fitting parameters of electrochemical impedance spectra of FTNT, BFTNT and F-BFTNT in simulated sunlight
Fig.8  Proposed mechanism of the photoinduced cathodic protection process[34]
1 Wang F L, Jiang Y J, Gautam A, et al. Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts [J]. ACS Catal., 2014, 4: 1451
doi: 10.1021/cs5002948
2 Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
doi: 10.1016/j.corsci.2012.10.040
3 Momeni M M, Ghayeb Y, Ezati F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes [J]. J. Colloid Interf. Sci., 2018, 514: 70
doi: 10.1016/j.jcis.2017.12.021
4 Jaiswal R, Patel N, Dashor A, et al. Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light [J]. Appl. Catal., 2016, 183B: 242
5 Tripathy J, Lee K, Schmuki P. Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes [J]. Angew. Chem. Int. Ed. 2014, 53: 12605
doi: 10.1002/anie.201406324 pmid: 25243727
6 Li H L, Wang G Y, Niu J B, et al. Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method [J]. Results Phys., 2019, 14: 102499
doi: 10.1016/j.rinp.2019.102499
7 Nan Y B, Wang X T, Ning X B, et al. Fabrication of Ni3S2/TiO2 photoanode material for 304 stainless steel photocathodic protection under visible light [J]. Surf. Coat. Technol., 2019, 377: 124935
doi: 10.1016/j.surfcoat.2019.124935
8 Li X R, Wang X T, Ning X B, et al. Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light [J]. Appl. Surf. Sci., 2018, 462: 155
doi: 10.1016/j.apsusc.2018.08.108
9 Xie X, Liu L, Wang F H. Effect of preparation and surface modification of TiO2 on its photoelectrochemical cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 123
解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 123
10 Qiu P, Yang L J, Song Y, et al. Influence of DMF modified TiO2 film on the photogenerated cathodic protection behavior [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 289
邱萍, 杨连捷, 宋玉 等. 添加DMF对TiO2薄膜光生阴极保护性能影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 289
11 Xu X J, Tang C C, Zeng H B, et al. Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes [J]. ACS Appl. Mater. Interfaces, 2011, 3: 1352
doi: 10.1021/am200152b
12 Losic D, Aw M S, Santos A, et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives [J]. Expert Opin. Drug Del., 2015, 12: 103
doi: 10.1517/17425247.2014.945418
13 Banerjee A N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures [J]. Nanotechnol. Sci. Appl., 2011, 4: 35
doi: 10.2147/NSA.S9040 pmid: 24198485
14 Khan M I, Bhatti K A, Qindeel R, et al. Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol-gel spin coating [J]. Results Phys., 2017, 7: 1437
doi: 10.1016/j.rinp.2017.03.023
15 Atabaev T S, Hossain M A, Lee D, et al. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications [J]. Results Phys., 2016, 6: 373
doi: 10.1016/j.rinp.2016.07.002
16 Xu H M, Liu W, Cao L X, et al. Preparation of ZnO/TiO2 composite film on 304 stainless steel and its photo-cathodic protection properties [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 507
许洪梅, 柳伟, 曹立新 等. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 507
17 Maletić M, Vukčević M, Kalijadis A, et al. Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants [J]. Arabian J. Chem., 2019, 12: 4388
doi: 10.1016/j.arabjc.2016.06.020
18 Bregadiolli B A, Fernandes S L, de Oliveira Graeff C F. Easy and fast preparation of TiO2- based nanostructures using microwave assisted hydrothermal synthesis [J]. Mater. Res., 2017, 20: 912
doi: 10.1590/1980-5373-mr-2016-0684
19 Ge S S, Zhang Q X, Wang X T, et al. Photocathodic protection of 304 stainless steel by MnS/TiO2 nanotube films under simulated solar light [J]. Surf. Coat. Technol., 2015, 283: 172
doi: 10.1016/j.surfcoat.2015.10.061
20 Akshay V R, Arun B, Mandal G, et al. Observation of optical band-gap narrowing and enhanced magnetic moment in Co-doped sol-gel-derived anatase TiO2 nanocrystals [J]. J. Phys. Chem., 2018, 122C: 26592
21 Zhang Y Y, Hu H W, Chang M L, et al. Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation [J]. Ceram. Int., 2017, 43: 9053
doi: 10.1016/j.ceramint.2017.04.050
22 Liu Z Q, Tang P, Liu X S, et al. Truncated titanium/semiconductor cones for wide-band solar absorbers [J]. Nanotechnology, 2019, 30: 305203
doi: 10.1088/1361-6528/ab109d
23 Abdullah M, Kamarudin S K. Titanium dioxide nanotubes (TNT) in energy and environmental applications: an overview [J]. Renewable Sustainable Energy Rev., 2017, 76: 212
doi: 10.1016/j.rser.2017.01.057
24 Zhao Y, Hoivik N, Wang K Y. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting [J]. Nano Energy, 2016, 30: 728
doi: 10.1016/j.nanoen.2016.09.027
25 Li H, Song W Z, Cui X Q, et al. AgInS2 and graphene co-sensitized TiO2 photoanodes for photocathodic protection of Q235 carbon steel under visible light [J]. Nanotechnology, 2020, 31: 305704
doi: 10.1088/1361-6528/ab85eb
26 Li H, Wang X T, Wei Q Y, et al. Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light [J]. Nanotechnology, 2017, 28: 225701
doi: 10.1088/1361-6528/aa6e5d
27 Peighambardoust N S, Nasirpouri F. Manipulating morphology, pore geometry and ordering degree of TiO2 nanotube arrays by anodic oxidation [J]. Surf. Coat. Technol., 2013, 235: 727
doi: 10.1016/j.surfcoat.2013.08.058
28 Ma X M, Ma Z, Lu D Z, et al. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64: 21
doi: 10.1016/j.jmst.2020.01.029
29 Fan F Q. Effect of the seawater flow rate and static pressure on the cathode protection [D]. Qingdao: Ocean University of China, 2014
范丰钦. 模拟海水流速、静压力对阴极保护的影响 [D]. 青岛: 中国海洋大学, 2014
30 Dokoohaki M H, Mohammadpour F, Zolghadr A R. New insight into electrosynthesis of ordered TiO2 nanotubes in EG-based electrolyte solutions: combined experimental and computational assessment [J]. Phys. Chem. Chem. Phys., 2020, 22: 22719
doi: 10.1039/d0cp03684f pmid: 33016297
31 Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
廖彤, 马峥, 李蕾蕾 等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2019, 39: 36
32 Franking R, Li L S, Lukowski M A, et al. Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation [J]. Energy Environ. Sci., 2013, 6: 500
doi: 10.1039/C2EE23837C
33 Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light [J]. Nanoscale Res. Lett., 2017, 12: 80
doi: 10.1186/s11671-017-1863-9
34 Liao T. Study on the photogenerated cathodic protection of TiO2 nanocomposites for metals [D]. Qingdao: University of Chinese Academy of Sciences, 2018
廖彤. TiO2纳米复合材料对金属光生阴极保护性能研究 [D]. 青岛: 中国科学院海洋研究所, 2018
[1] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[2] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[3] Lin CHEN, Furong ZHONG, Jinlong ZAN. Discharge Property and Voltage Delay of AZ31B Mg Alloy in Mg(NO3)2/Mg(ClO4)2 Composite Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
No Suggested Reading articles found!