|
|
Preparation of TiO2 Nanotube Arrays in Composite Electrolytes and Their Photogenerated Cathodic Protection Performance |
BAO Chenyu, LI Jianmin, YE Mengying, GAO Rongjie( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract At present, TiO2 nanotubes are mainly prepared in single fluorinated electrolyte by secondary anodization. Herewith TiO2 nanotube arrays were prepared in three electrolytes of different fluoride ions (F-, BF4-, F--BF4-) by secondary anodization, aiming to figure out how the preparation processes affect the photogenerated cathodic performance of the prepared TiO2 nanotubes as photoanodes. The morphology, structure, light response ability and photogenerated carrier separation efficiency of the three nanotubes were comparatively examined by means of SEM, XRD, UV-vis DRS and PL, while the photoelectrochemical properties of the three samples were tested in the condition of open and closed visible light. The results showed that TiO2 nanotube arrays prepared in glycol composite electrolyte containing NH4F, NH4BF4 and H2O presented much regular structure, stronger light absorption, higher photogenerated carrier separation efficiency and better photogenerated cathodic protection for 304 stainless steels rather than those prepared in traditional electrolyte of single fluoride salt.
|
Received: 22 September 2021
|
|
Fund: National Natural Science Foundation of China-Shandong Province Joint Fund(U1706221) |
Corresponding Authors:
GAO Rongjie
E-mail: dmh206@ouc.edu.cn
|
About author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
|
1 |
Wang F L, Jiang Y J, Gautam A, et al. Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts [J]. ACS Catal., 2014, 4: 1451
doi: 10.1021/cs5002948
|
2 |
Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
doi: 10.1016/j.corsci.2012.10.040
|
3 |
Momeni M M, Ghayeb Y, Ezati F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes [J]. J. Colloid Interf. Sci., 2018, 514: 70
doi: 10.1016/j.jcis.2017.12.021
|
4 |
Jaiswal R, Patel N, Dashor A, et al. Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light [J]. Appl. Catal., 2016, 183B: 242
|
5 |
Tripathy J, Lee K, Schmuki P. Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes [J]. Angew. Chem. Int. Ed. 2014, 53: 12605
doi: 10.1002/anie.201406324
pmid: 25243727
|
6 |
Li H L, Wang G Y, Niu J B, et al. Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method [J]. Results Phys., 2019, 14: 102499
doi: 10.1016/j.rinp.2019.102499
|
7 |
Nan Y B, Wang X T, Ning X B, et al. Fabrication of Ni3S2/TiO2 photoanode material for 304 stainless steel photocathodic protection under visible light [J]. Surf. Coat. Technol., 2019, 377: 124935
doi: 10.1016/j.surfcoat.2019.124935
|
8 |
Li X R, Wang X T, Ning X B, et al. Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light [J]. Appl. Surf. Sci., 2018, 462: 155
doi: 10.1016/j.apsusc.2018.08.108
|
9 |
Xie X, Liu L, Wang F H. Effect of preparation and surface modification of TiO2 on its photoelectrochemical cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 123
|
|
解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 123
|
10 |
Qiu P, Yang L J, Song Y, et al. Influence of DMF modified TiO2 film on the photogenerated cathodic protection behavior [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 289
|
|
邱萍, 杨连捷, 宋玉 等. 添加DMF对TiO2薄膜光生阴极保护性能影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 289
|
11 |
Xu X J, Tang C C, Zeng H B, et al. Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes [J]. ACS Appl. Mater. Interfaces, 2011, 3: 1352
doi: 10.1021/am200152b
|
12 |
Losic D, Aw M S, Santos A, et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives [J]. Expert Opin. Drug Del., 2015, 12: 103
doi: 10.1517/17425247.2014.945418
|
13 |
Banerjee A N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures [J]. Nanotechnol. Sci. Appl., 2011, 4: 35
doi: 10.2147/NSA.S9040
pmid: 24198485
|
14 |
Khan M I, Bhatti K A, Qindeel R, et al. Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol-gel spin coating [J]. Results Phys., 2017, 7: 1437
doi: 10.1016/j.rinp.2017.03.023
|
15 |
Atabaev T S, Hossain M A, Lee D, et al. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications [J]. Results Phys., 2016, 6: 373
doi: 10.1016/j.rinp.2016.07.002
|
16 |
Xu H M, Liu W, Cao L X, et al. Preparation of ZnO/TiO2 composite film on 304 stainless steel and its photo-cathodic protection properties [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 507
|
|
许洪梅, 柳伟, 曹立新 等. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 507
|
17 |
Maletić M, Vukčević M, Kalijadis A, et al. Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants [J]. Arabian J. Chem., 2019, 12: 4388
doi: 10.1016/j.arabjc.2016.06.020
|
18 |
Bregadiolli B A, Fernandes S L, de Oliveira Graeff C F. Easy and fast preparation of TiO2- based nanostructures using microwave assisted hydrothermal synthesis [J]. Mater. Res., 2017, 20: 912
doi: 10.1590/1980-5373-mr-2016-0684
|
19 |
Ge S S, Zhang Q X, Wang X T, et al. Photocathodic protection of 304 stainless steel by MnS/TiO2 nanotube films under simulated solar light [J]. Surf. Coat. Technol., 2015, 283: 172
doi: 10.1016/j.surfcoat.2015.10.061
|
20 |
Akshay V R, Arun B, Mandal G, et al. Observation of optical band-gap narrowing and enhanced magnetic moment in Co-doped sol-gel-derived anatase TiO2 nanocrystals [J]. J. Phys. Chem., 2018, 122C: 26592
|
21 |
Zhang Y Y, Hu H W, Chang M L, et al. Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation [J]. Ceram. Int., 2017, 43: 9053
doi: 10.1016/j.ceramint.2017.04.050
|
22 |
Liu Z Q, Tang P, Liu X S, et al. Truncated titanium/semiconductor cones for wide-band solar absorbers [J]. Nanotechnology, 2019, 30: 305203
doi: 10.1088/1361-6528/ab109d
|
23 |
Abdullah M, Kamarudin S K. Titanium dioxide nanotubes (TNT) in energy and environmental applications: an overview [J]. Renewable Sustainable Energy Rev., 2017, 76: 212
doi: 10.1016/j.rser.2017.01.057
|
24 |
Zhao Y, Hoivik N, Wang K Y. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting [J]. Nano Energy, 2016, 30: 728
doi: 10.1016/j.nanoen.2016.09.027
|
25 |
Li H, Song W Z, Cui X Q, et al. AgInS2 and graphene co-sensitized TiO2 photoanodes for photocathodic protection of Q235 carbon steel under visible light [J]. Nanotechnology, 2020, 31: 305704
doi: 10.1088/1361-6528/ab85eb
|
26 |
Li H, Wang X T, Wei Q Y, et al. Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light [J]. Nanotechnology, 2017, 28: 225701
doi: 10.1088/1361-6528/aa6e5d
|
27 |
Peighambardoust N S, Nasirpouri F. Manipulating morphology, pore geometry and ordering degree of TiO2 nanotube arrays by anodic oxidation [J]. Surf. Coat. Technol., 2013, 235: 727
doi: 10.1016/j.surfcoat.2013.08.058
|
28 |
Ma X M, Ma Z, Lu D Z, et al. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64: 21
doi: 10.1016/j.jmst.2020.01.029
|
29 |
Fan F Q. Effect of the seawater flow rate and static pressure on the cathode protection [D]. Qingdao: Ocean University of China, 2014
|
|
范丰钦. 模拟海水流速、静压力对阴极保护的影响 [D]. 青岛: 中国海洋大学, 2014
|
30 |
Dokoohaki M H, Mohammadpour F, Zolghadr A R. New insight into electrosynthesis of ordered TiO2 nanotubes in EG-based electrolyte solutions: combined experimental and computational assessment [J]. Phys. Chem. Chem. Phys., 2020, 22: 22719
doi: 10.1039/d0cp03684f
pmid: 33016297
|
31 |
Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
|
|
廖彤, 马峥, 李蕾蕾 等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2019, 39: 36
|
32 |
Franking R, Li L S, Lukowski M A, et al. Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation [J]. Energy Environ. Sci., 2013, 6: 500
doi: 10.1039/C2EE23837C
|
33 |
Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light [J]. Nanoscale Res. Lett., 2017, 12: 80
doi: 10.1186/s11671-017-1863-9
|
34 |
Liao T. Study on the photogenerated cathodic protection of TiO2 nanocomposites for metals [D]. Qingdao: University of Chinese Academy of Sciences, 2018
|
|
廖彤. TiO2纳米复合材料对金属光生阴极保护性能研究 [D]. 青岛: 中国科学院海洋研究所, 2018
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|