Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 551-562    DOI: 10.11902/1005.4537.2021.176
Current Issue | Archive | Adv Search |
Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution
WANG Tong1,2, MENG Huimin1(), GE Pengfei1,2, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. Ltd., Deyang 618000, China
Download:  HTML  PDF(12795KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior of 2Cr-1Ni-1.2Mo-0.2V steel in NH4H2PO4 solutions was investigated by means of open circuit potential measurement, polarization curve measurement, electrochemical impedance spectroscopy, laser scanning confocal microscopy, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray polycrystalline diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that with the increase of NH4H2PO4 concentration, the corrosion rate of 2Cr-1Ni-1.2Mo-0.2V steel was increased rapidly at first and then slowly. Pitting corrosion occurred when the 2Cr-1Ni-1.2Mo-0.2V steel immersed in solutions of 0~1 mmol/L NH4H2PO4 for 20 h. But only uniform corrosion might occur when the steel immersed in solutions of 30-120 mmol/L NH4H2PO4 for 20 h. The corrosion product of 2Cr-1Ni-1.2Mo-0.2V steel was a two layered scale, the outer layer composed mainly of Fe3(PO4)2 and FePO4, and the inner layer composed mainly of Fe3O4. With the increase of NH4H2PO4 concentration, the coverage and compactness of the outer corrosion product layer increased, and Cr, Mo enriched in the inner corrosion product layer, thereby the corrosion resistance of 2Cr-1Ni-1.2Mo-0.2V steel was increased.

Key words:  CrNiMoV steel      NH4H2PO4      corrosion product film      electrochemical corrosion     
Received:  23 July 2021     
ZTFLH:  TG174  
Corresponding Authors:  MENG Huimin,LI Quande     E-mail:  menghm16@126.com;quandelee@126.com
About author:  LI Quande, E-mail: quandelee@126.com
MENG Huiming, E-mail: menghm16@126.com

Cite this article: 

WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 551-562.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.176     OR     https://www.jcscp.org/EN/Y2022/V42/I4/551

Fig.1  Average corrosion rate of the 1R steel immersed in NH4H2PO4 solution at different concentrations for 20 h
Fig.2  Corrosion morphologies before pickling (a1-f1) and corrosion morphologies after pickling (a2-f2) of the 1R steel immersed in 0 mmol/L (a1, a2), 1 mmol/L (b1, b2), 30 mmol/L (c1, c2), 60 mmol/L (d1, d2), 90 mmol/L (e1, e2),120 mmol/L (f1, f2) NH4H2PO4 solution for 20 h
Fig.3  Three-dimensional surface corrosion morphologies of the selected region1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) in Fig.2
Fig.4  Micro-morphologies of the outer corrosion product film (a) and the inner corrosion product film (b) of the 1R steel immersed in 120 mmol/L NH4H2PO4 solution for 20 h
SolutionSurface roughness / μmSpecific surface area
RaRqRz
30 mmol/L1.92.612.23.4
60 mmol/L1.41.910.82.1
90 mmol/L0.81.05.12.0
120 mmol/L0.70.94.71.9
Table 1  Surface roughness and specific surface area of the 1R steel immersed in 30, 60, 90, and 120 mmol/L NH4H2PO4 solution for 20 h
FilmOPFeCrMo
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
Outer corrosion film51.2274.1216.9312.6631.3713.010.480.21------
Inner corrosion film6.0418.261.131.7688.7076.782.632.451.500.75
Table 2  EDS analysis of the corrosion product film on the 1R steel immersed in 120 mmol/L NH4H2PO4 solution for 20 h
Fig.5  XRD patterns of the corrosion product on the 1R steel immersed in 120 mmol/L NH4H2PO4 solution for 20 h
Fig.6  Fe 2p3/2 (a-d), Cr2p3/2 (e-h) and Mo 3d (i-l) XPS spectra of the inner corrosion product film on the 1R steel immersed in 30 mmol/L (a, e, j), 60 mmol/L (b, f, i), 90 mmol/L (c, g, k), 120 mmol/L (d, h, l) NH4H2PO4 solution for 20 h
ProductPeak areas (Percentage of peak area / %)
30 mmo/L60 mmo/L90 mmo/L120 mmo/L
Fe3O43954.9 (46.7)8587.6 (50.4)8173.8 (48.6)8268.6 (48.0)
Fe(OH)31326.4 (15.6)2443.3 (14.3)2400.9 (14.3)1733.0 (10.1)
Fe3(PO4)21421.0 (16.8)2676.1 (15.7)3365.0 (20.0)4425.7 (25.7)
FePO41770.4 (20.9)3347.0 (19.6)2884.4 (17.1)2801.7 (16.3)
CrO31288.6 (61.4)3148.7 (45.5)3547.3 (41.4)2642.8 (31.2)
Cr(OH)3811.4 (38.6)3765.1 (54.5)5016.2 (58.6)5815.3 (68.8)
Mo6+ 3d5/2474.7 (60)2610.9 (60)4025.0 (60)4499.5 (61.8)
Mo6+ 3d3/2316.5 (40)1740.6 (40)2683.3 (40)2778.2 (38.2)
Table 3  XPS spectra peak aera and its related percentage for Fe, Cr, Mo related compounds in the inner corrosion product film
SolutionCFe / %CCr / %CMo / %
30 mmol/L73.722.24.1
60 mmol/L60.830.09.2
90 mmol/L53.933.412.7
120 mmol/L54.032.413.6
Table 4  Atom percent of the main elements in the inner corrosion product film
SolutionRs / Ω·cm2QfRf / Ω·cm2RL / Ω·cm2L / HQdlRct / Ω·cm2
Y0 / Ω-1·cm-2·S nnY0 / Ω-1·cm-2·S nn
0 mmol/L7.58 ×104---------------6.76 ×10-50.816.33 ×104
1 mmol/L5816---------------2.16 ×10-40.629977
30 mmol/L297.61.95 ×10-30.97203255.926475.87 ×10-40.77480.4
60 mmol/L1433.03 ×10-30.97114.342.3751.49.64 ×10-40.76331.8
90 mmol/L1033.09 ×10-30.9577.540.03257.71.02 ×10-30.76266.9
120 mmol/L80.763.37 ×10-30.9757.470.01180.41.09 ×10-30.76243.4
Table 5  Electrochemical impedance spectroscopy parameters of 1R steel immersed in NH4H2PO4 solution at different concentrations for 20 h
Fig.7  Open circuit potentials (a) of the 1R steel immersed in NH4H2PO4 solution at different concentrations for 20 h and the pH, electrical conductivity (b) of the test solution
Fig.8  Polarization curves (a) and electrochemical parameters (b) of the 1R steel immersed in NH4H2PO4 solution at different concentrations for 20 h
Fig.9  Nyquist plots (a, b) and Bode plots (c, d) of the 1R steel immersed in NH4H2PO4 solution at different concentrations for 20 h
Fig.10  Equivalent circuits of the 1R steel immersed in 0-1 mmol/L (a) and 30-120 mmol/L (b) NH4H2PO4 solution for 20 h
1 Zhou G Y, Chen S G, Pu Q C. Technical status of industrial grade monoammonium phosphate production by WPA purification method and industrial application of its key technology [J]. Phosphate Compd. Fert., 2015, 30(3): 31
周贵云, 陈仕刚, 蒲秋岑. 湿法磷酸净化生产工业级磷酸一铵的技术现状及关键技术的工业应用 [J]. 磷肥与复肥, 2015, 30(3): 31
2 Lian H K, Li Y, Shu G Y Z, et al. An overview of domestic technologies for waste heat utilization [J]. Energy Conserv. Technol., 2011, 29: 123
连红奎, 李艳, 束光阳子 等. 我国工业余热回收利用技术综述 [J]. 节能技术, 2011, 29: 123
3 Chu X L, Zhu D S. Comprehensive utilization of low temperature waste heat resources in chemical industry [J]. Mod. Chem. Res., 2020, (15): 100
褚秀玲, 朱德颂. 综合利用化工行业低温余热资源 [J]. 当代化工研究, 2020, (15): 100
4 Chang H Q, Zhang Y. Application and problem analysis of industrial waste heat power generation system [J]. Energy Conserv., 2015, 34(9): 44
常海青, 张燕. 工业余热发电系统的应用及问题分析 [J]. 节能, 2015, 34(9): 44
5 Luo L H, Huang Y H, Xuan F Z. Pitting corrosion and stress corrosion cracking around heat affected zone in welded joint of CrNiMoV Rotor steel in Chloridized high temperature water [J]. Procedia Eng., 2015, 130: 1190
doi: 10.1016/j.proeng.2015.12.290
6 Luo L H, Huang Y H, Weng S, et al. Mechanism-related modelling of pit evaluation in the CrNiMoV steel in simulated environment of low pressure nuclear steam turbine [J]. Mater. Des., 2016, 105: 240
doi: 10.1016/j.matdes.2016.05.058
7 Luo L H, Huang Y H, Xuan F Z. Deflection behaviour of corrosion crack growth in the heat affected zone of CrNiMoV steel welded joint [J]. Corros. Sci., 2017, 121: 11
doi: 10.1016/j.corsci.2017.01.020
8 Ouyang Y Q, Huang Y H, Weng S, et al. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment [J]. Trans. China Weld. Inst., 2019, 40(6): 153
欧阳玉清, 黄毓晖, 翁硕 等. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为 [J]. 焊接学报, 2019, 40(6): 153
9 Maeng W Y, Macdonald D D. The effect of acetic acid on the stress corrosion cracking of 3.5NiCrMoV turbine steels in high temperature water [J]. Corros. Sci., 2008, 50: 2239
doi: 10.1016/j.corsci.2008.04.023
10 Turnbull A, Zhou S. Pit to crack transition in stress corrosion cracking of a steam turbine disc steel [J]. Corros. Sci., 2004, 46: 1239
doi: 10.1016/j.corsci.2003.09.017
11 Turnbull A, Zhou S, Lukaszewicz M. Environmentally assisted small crack growth [J]. Procedia Mater. Sci., 2014, 3: 204
doi: 10.1016/j.mspro.2014.06.036
12 Weng S. Study on the effect of mechanical loadings on galvanic corrosion behavior of the welded joints in the nuclear steam turbine [D]. Shanghai: East China University of Science and Technology, 2018
翁硕. 外力对核电汽轮机焊接转子接头电偶腐蚀行为影响的研究 [D]. 上海: 华东理工大学, 2018
13 Rosario D A, Viswanathan R, Wells C H, et al. Stress corrosion cracking of steam turbine rotors [J]. Corrosion, 1998, 54: 531
doi: 10.5006/1.3284881
14 Zhang F B, Li R, Pan X X, et al. Behaviors of corrosion and inhibition of X70 steel in (NH4)2CO3 solutions [J]. Corrros. Prot., 2005, 26(9): 375
张付宝, 李容, 潘献晓 等. X70钢在 (NH4)2CO3溶液中的腐蚀及缓蚀行为 [J]. 腐蚀与防护, 2005, 26(9): 375
15 Zhang E Y, Chen Y G, Tang Y B, et al. Corrosion inhibition behavior of LaFe11.6Si1.4 alloy in water solution [J]. Rare Met. Mater. Eng., 2010, 39: 1627
张恩耀, 陈云贵, 唐永柏 等. LaFe11.6Si1.4合金在水溶液中的缓蚀 [J]. 稀有金属材料与工程, 2010, 39: 1627
16 Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
17 Lu S L. The formation and impacting mechanism of corrosion product film of low chromium alloy steel in CO2/H2S environment [D]. Beijing: University of Science & Technology Beijing, 2018
卢宋乐. 含Cr低合金钢CO2/H2S环境腐蚀产物膜形成及作用机理研究 [D]. 北京: 北京科技大学, 2018
18 Li T. Enhanced phosphate removal efficiency by using ferrous iron and its mechanism [D]. Harbin: Harbin Institute of Technology, 2015
李婷. 亚铁强化去除水中磷酸盐的作用机制与效能 [D]. 哈尔滨: 哈尔滨工业大学, 2015
19 Long J M, Fan A M. XPS analysis of stainless steel surface in H3PO4/H2SO4 system [J]. Mater. Prot., 1994, 27(8): 24
龙晋明, 樊爱民. H3PO4/H2SO4体系中不锈钢表面膜的XPS分析 [J]. 材料保护, 1994, 27(8): 24
20 Li Q D, Ran D, Zhai F Q, et al. Effect of CO3 2- on the electrochemical behaviour of 14Cr12Ni3Mo2VN stainless steel in a sodium chloride solution [J]. Int. J. Electrochem. Sci., 2020, 15: 2973
21 Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal., 2004, 36: 1564
doi: 10.1002/sia.1984
22 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
23 Singer P C, Stumm W. Acidic mine drainage: the rate-determining step [J]. Science, 1970, 167: 1121
pmid: 17829406
24 Thistleton J, Berry T A, Pearce P, et al. Mechanisms of chemical phosphorus removal II: iron (III) salts [J]. Process Saf. Environ. Prot., 2002, 80: 265
doi: 10.1205/095758202762277623
25 De Gregorio C, Caravelli A H, Zaritzky N E. Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition [J]. Chem. Eng. J., 2010, 165: 607
doi: 10.1016/j.cej.2010.10.004
26 Gardin E, Zanna S, Seyeux A, et al. XPS and TOF-SIMS characterization of the surface oxides on lean duplex stainless steel-global and local approaches [J]. Corros. Sci., 2019, 155: 121
doi: 10.1016/j.corsci.2019.04.039
27 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
28 Li Y Y, Wang Z Z, Guo X P, et al. Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions [J]. Corros. Sci., 2019, 147: 260
doi: 10.1016/j.corsci.2018.11.025
29 Zhang X F, Wang J, Fan H Y, et al. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding [J]. Appl. Surf. Sci., 2018, 440: 755
doi: 10.1016/j.apsusc.2018.01.225
30 Ren G Q. The study on the electrochemical corrosion characteristics of a low-alloy steel [D]. Xi'an: Xi'an Shiyou University, 2015
任国琪. 一种低合金钢的电化学腐蚀行为研究 [D]. 西安: 西安石油大学, 2015
31 Ye F, Ge P L, Xu Y Y, et al. Effect of PH value on the stability of corrosion product film in H2S/CO2 environment [J]. Mater. Prot., 2020, 53(7): 55
叶帆, 葛鹏莉, 许艳艳 等. H2S/CO2环境中pH值对腐蚀产物膜以及腐蚀速率的影响 [J]. 材料保护, 2020, 53(7): 55
32 Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
李鑫, 陈旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
33 Liu M, Cheng X Q, Li X G, et al. Corrosion resistance mechanisms of passive films formed on low alloy rebar steels in liquor of cement extract [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 558
刘明, 程学群, 李晓刚 等. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究 [J]. 中国腐蚀与防护学报, 2018, 38: 558
34 Chen W J, Fang L, Pan G, et al. Corrosion evolution characteristics of Q235B steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
陈文娟, 方莲, 潘刚 等. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
35 He S, Sun Y J, Zhang Z H, et al. Corrosion behavior of 20# steel in alkanolamine solution mixed with ionic liquid containing saturated CO2 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 309
贺三, 孙银娟, 张志浩 等. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 309
36 Zhou Q H, Zhang J D, Yang C Z. Investigation on low conductivity solutions by EIS [J]. North China Electric Power, 2000, (10): 37
周琼花, 张敬东, 杨昌柱. 低电导率溶液的EIS谱研究 [J]. 华北电力技术, 2000, (10): 37
37 Xu Z X, Zhou H R, Yao W. Corrosion behavior of automotive cold rolled steels DC06 and DP600 in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 155
徐致孝, 周和荣, 姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 155
38 Liu W, Lu S L, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO2 aqueous environment [J]. Appl. Surf. Sci., 2016, 379: 163
doi: 10.1016/j.apsusc.2016.04.044
[1] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[2] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[3] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[6] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[7] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[8] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[9] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[10] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[11] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[12] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[13] ZHANG Yu, WANG Jun, SHI Shukun, WANG Yuansheng. EFFECT OF AGING ON ELECTROCHEMICAL CORROSION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL IN SULFUR ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 496-500.
[14] . MECHANISM OF PROTECTIVE FILM FORMATION DURING CO2 CORROSION ON X65 STEEL[J]. 中国腐蚀与防护学报, 2007, 27(6): 338-341 .
[15] . APPLICATION OF ATOMIC FORCE MICROSCOPY IN STUDY OF SULFATE-REDUCING BACTERIA TO A3 STEEL[J]. 中国腐蚀与防护学报, 2007, 27(2): 70-.
No Suggested Reading articles found!