Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 669-674    DOI: 10.11902/1005.4537.2021.197
Current Issue | Archive | Adv Search |
Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment
FAN Yi1, YANG Wenxiu1, WANG Jun1, CAI Jiaxing1, MA Hongchi1,2()
1.Nanjing Iron & Steel United Co. Ltd., Nanjing 210035, China
2.National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(20300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of high-strength Q690qE bridge steel was investigated by means of immersion-drying cyclical corrosion test (CCT) method coupled with characterization of the morphology and composition of rust, cross sectional morphology of the corroded steels and corrosion depth measurement. The results revealed that a compact rust layer can easily form in this simulated humid coastal-industrial environment, and which presents certain protection ability for the steel substrate. However, there was no enrichment of Ni/Cr and other alloy elements in the rust. Besides, there was apparent concentration of Cl- and FeSO4 underneath the rust layer, which may contribute to the high corrosion rate and evident corrosion pits on the steel surface. The results of power exponent fitting display that the corrosion depth (mm) and time (d) exhibits a well power function of D=0.019·t0.7.

Key words:  Q690qE bridge steel      coastal-industrial environment      high-strength weathering steel      atmospheric corrosion     
Received:  13 August 2021     
ZTFLH:  TG172.3  
Fund: National Science and Technology Resources Investigation Program of China(2019FY101400);Fundamental Research Funds for the Central Universities(FRF-BD-20-26A)
Corresponding Authors:  MA Hongchi     E-mail:  mahongchi@ustb.edu.cn
About author:  MA Hongchi, E-mail: mahongchi@ustb.edu.cn

Cite this article: 

FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 669-674.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.197     OR     https://www.jcscp.org/EN/Y2022/V42/I4/669

Fig.1  OM (a) and SEM (b) microstructure of Q690qE steel
Fig.2  Original morphology (a) and morphologies of the rust layer on Q690qE steel afte 10 d (b), 25 d (c) and 40 d (d) of cyclic corrosion test
Fig.3  SEM morphologies of rust layer on Q690qE steel after 10 d (a), 25 d (b) and 40 d (c) of cyclic corrosion test
Fig.4  Cross-sectional images of the rust layer of Q690qE steel after 10 d (a), 25 d (b) and 40 d (c) of cyclic corrosion test
Fig.5  Cross-sectional element distribution of Q690qE steel after 10 d (a), 25 d (b) and 40 d (c) of cyclic corrosion test
Fig.6  Optical images of Q690qE steel substrate after different time of CCT
Fig.7  Corrosion morphologies of Q690qE steel afte 10 d (a), 25 d (b) and 40 d (c) of cyclic corrosion test
Fig.8  Corrosion depth of Q690qE steel of cyclic corrosion test with corrosion time
1 Fan M, Shi S H, Li Z P, et al. Study on corrosion behavior of high-strength weathering bridge steel Q420qENH in different areas [J]. Met. Mater. Metall. Eng., 2020, 48(2): 13
范明, 史术华, 李中平 等. 高强耐候桥梁用钢Q420qENH不同地区腐蚀行为研究 [J]. 金属材料与冶金工程, 2020, 48(2): 13
2 Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
3 Liu L, Zhao R Q, Yang J, et al. Study on heat treatment and corrosion behavior of new weatherproof bridge steel [J]. Hot Work. Technol., 2019, 48(22): 159
刘路, 赵瑞强, 杨娟 等. 新型耐候桥梁钢的热处理与腐蚀行为研究 [J]. 热加工工艺, 2019, 48(22): 159
4 Li L, Ai F F, Chen Y Q, et al. Study on corrosion behavior of Q420qENH bridge steel in simulated ocean environment [A]. 10th Chin. Iron Steel Conf. [C]. Shanghai, 2015
李琳, 艾芳芳, 陈义庆 等. Q420qENH桥梁钢模拟海洋环境腐蚀行为研究 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集III [C]. 上海, 2015
5 Lei J, Yang D H, Wang Z T. The corrosion resistance of weathering bridge steel in industrial environment [J]. Highway, 2020, 65(11): 331
雷进, 杨大海, 汪志甜. 耐候桥梁钢在工业大气环境下的耐蚀性研究 [J]. 公路, 2020, 65(11): 331
6 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
7 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
8 Xu X X, Zhang T Y, Wu W, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo [J]. Constr. Build. Mater., 2021, 279: 122341
doi: 10.1016/j.conbuildmat.2021.122341
9 Tranchida G, Di Franco F, Megna B, et al. Semiconducting properties of passive films and corrosion layers on weathering steel [J]. Electrochim. Acta, 2020, 354: 136697
doi: 10.1016/j.electacta.2020.136697
10 Fan Y M, Liu W, Li S M, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39: 190
doi: 10.1016/j.jmst.2019.07.054
11 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance [J]. Constr. Build. Mater., 2019, 222: 750
doi: 10.1016/j.conbuildmat.2019.06.155
12 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
13 Zhang Q C, Wang J J, Wu J S, et al. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, 37: 193
张全成, 王建军, 吴建生 等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, 37: 193
14 Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater., 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
15 Chen M D, Pang K, Liu Z Y, et al. Influence of rust permeability on corrosion of E690 Steel in industrial and non-industrial marine splash zones [J]. J. Mater. Eng. Perform., 2018, 27: 3742
doi: 10.1007/s11665-018-3406-7
16 Ma H C, Liu Z Y, Hao W K, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331
马宏驰, 刘智勇, 郝文魁 等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331
doi: 10.11900/0412.1961.2015.00362
17 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
doi: 10.1016/j.corsci.2014.02.010
18 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
19 Guo T M, Xu X J, Zhang Y W, et al. Corrosion behavior of Q345q bridge steel and Q345qNH weathering steel in a mixed medium of simulated industrial environment solution and deicing salt [J]. Chin. J. Mater. Res., 2020, 34: 434
郭铁明, 徐秀杰, 张延文 等. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为 [J]. 材料研究学报, 2020, 34: 434
20 Ma H C, Liu Z Y, Du C W, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere [J]. J. Mechan. Eng., 2016, 52: 33
马宏驰, 刘智勇, 杜翠薇 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响 [J]. 机械工程学报, 2016, 52: 33
21 Ma H C, Fan Y, Liu Z Y, et al. Effect of pre-strain on the electrochemical and stress corrosion cracking behavior of E690 steel in simulated marine atmosphere [J]. Ocean Eng., 2019, 182: 188
doi: 10.1016/j.oceaneng.2019.04.044
22 Liu W M, Liu J, Pan H B, et al. Synergisic effect of Mn, Cu, P with Cr content on the corrosion behavior of weathering steel as a train under the simulated industrial atmosphere [J]. J. Alloy. Compd., 2020, 834: 155095
doi: 10.1016/j.jallcom.2020.155095
23 Feng Y L, Bai Z H, Chen L H, et al. Correlation of indoor accelerated corrosion with outdoor exposure for Corten-A weathering steel in polluted marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 519
冯亚丽, 白子恒, 陈利红 等. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 519
[1] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[2] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[3] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[4] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[5] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[6] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[7] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[8] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
No Suggested Reading articles found!