Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 667-672    DOI: 10.11902/1005.4537.2020.210
Current Issue | Archive | Adv Search |
Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel
WANG Yicong, HU Qian, HUANG Feng, LIU Jing()
State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(4131KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2205 Duplex stainless steels (DSS) with different volume ratio of ferrite to austenite were prepared by solution treatment. Then their micro-polarization behavior and pitting resistance were studied by means of electrochemical measurement, micro-polarization measurement and corrosion morphology analysis. The effect of electrochemical activity of single α and γ phase on pitting resistance of 2205 DSS was also examined. Results show that the alloying element content and phase fraction of two phases changed after solution treatment, which influenced the micro-electrochemical activity of two phases and galvanic effect between two phases. When the phase fraction of α is 60.8%, the steel of two phases showed the highest corrosion potential, the lowest corrosion current density and the weakest galvanic effect. The 2205 DSS, in this case, possesses the best pitting resistance.

Key words:  duplex stainless steel      pitting      microstructure partition      micro-polarization     
Received:  26 October 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871171)
Corresponding Authors:  LIU Jing     E-mail:  liujing@wust.edu.cn
About author:  LIU Jing, E-mail: liujing@wust.edu.cn

Cite this article: 

WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 667-672.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.210     OR     https://www.jcscp.org/EN/Y2021/V41/I5/667

Fig.1  Microstructures of 2205 DSS: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
SampleSolution temperature / ℃PhaseVolume fraction / %Average mass fraction / %
CrMoN
1#1000α55.323.004.300.05
γ44.720.132.490.407
2#1050α57.723.114.200.05
γ42.320.782.230.431
3#1100α60.822.903.850.05
γ39.220.722.330.465
4#1150α62.922.783.730.05
γ37.121.352.350.507
5#1200α64.823.513.470.05
γ35.221.422.390.518
6#1250α67.522.463.660.05
γ32.520.862.360.561
Table 1  Volume fraction and element composition of two phases
Fig.4  Corrosion morphologies of six samples after potentiostatic polarization: (a) 1#, (b) 2#, (c) 3#, (d) 4#, (e) 5#, (f) 6#
Fig.5  Pits density in α and γ phase for six samples
Fig.6  Micro-potentiodynamic polarization of single phases of 1#, 3# and 5#
Fig.7  Corrosion morphologies of 3# sample after micro-potentiodynamic polarization: (a) α, (b) γ
Fig.2  Polarization curves of six different 2205 DSS samples in 60 ℃ 3.5%NaCl solution
Fig.3  Epit of different 2205 DSS samples
SamplePhaseEcorr / VIcorr / μA·cm-2
1#α-0.725.66
γ-0.533.44
3#α-0.553.07
γ-0.412.56
5#α-0.673.86
γ-0.542.82
Table 2  Fitting parameters of micro-polarization curves for 1#, 3# and 5# samples
Fig.8  PREN and Epit of α and γ in different samples
SampleIcorr1μA·cm-2Icorr2μA·cm-2Ecorr2-Ecorr1VA2 / A1
1#5.663.440.190.81
3#3.072.560.140.64
5#3.862.820.130.54
Table 3  Parameters influencing micro-galvanic effect between two phases
1 Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels [J]. J. Iron Steel Res., 2015, 27(4): 1
丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势 [J]. 钢铁研究学报, 2015, 27(4): 1
2 Huang A, Chen J, Song J, et al. Research progress of economic type duplex stainless steel welding [J]. Hot Work. Technol., 2016, 45(5): 7
黄澳, 陈吉, 宋见等. 经济型双相不锈钢焊接的研究进展 [J]. 热加工工艺, 2016, 45(5): 7
3 Liu Z Y, Li C G, Zhao Y, et al. Control on microstructures and properties of economical duplex stainless steel and its manufacturing technology [J]. Angang Technol., 2016, (2): 1
刘振宇, 李成刚, 赵岩等. 节约型双相不锈钢组织性能控制与制造技术 [J]. 鞍钢技术, 2016, (2): 1
4 Zhang W Y, Hou S Z. Progress of the application of duplex stainless steel at home and abroad [J]. Mag. Equip. Mach., 2015, (3): 62
张文毓, 侯世忠. 国内外双相不锈钢的应用进展 [J]. 装备机械, 2015, (3): 62
5 Wang G, Guo Y D, Guo L, et al. Development of duplex stainless steel, characteristics and applications [J]. Sci. Technol. Innovat., 2015, (7): 91
王刚, 郭幼丹, 郭雷等. 双相不锈钢的发展、特点及其应用 [J]. 科技与创新, 2015, (7): 91
6 Yu H C, Yan Y H, Liu X Y, et al. Analysis on composition, properties and precipitated phases of duplex stainless steel [J]. Spec. Steel, 2019, 40(3): 53
于海成, 严与辉, 刘小杨等. 双相不锈钢成分、性能及析出相分析 [J]. 特殊钢, 2019, 40(3): 53
7 Otake A, Muto I, Chiba A, et al. Pitting at the δ/γ boundary of type 304 stainless steel in NaCl solution: The role of oxide inclusions and segregation [J]. J. Electrochem. Soc., 2017, 164: C991
8 Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
9 Jia D B, Zhong L C, Yu J K, et al. Effects of electropulsing on inclusion size and corrosion-resistance of 304 stainless steel [J]. Mater. Sci. Technol., 2020, 36: 1263
10 Fan J W, He C C, Li J, et al. Effect of aging treatment on the pitting corrosion resistance of 2205 duplex stainless steel [J]. Shanghai Met., 2011, 33(4): 33
范君伟, 何晨冲, 李杰等. 时效处理对2205双相不锈钢耐点蚀性能的影响 [J]. 上海金属, 2011, 33(4): 33
11 Jastej S, Shahi A S. Impact toughness, fatigue crack growth and corrosion behavior of thermally aged UNS S32205 duplex stainless steel [J]. Trans. Indian Inst. Met., 2019, 72: 1497
12 Zhang L H. Study on the corrosion behavior of economical duplex stainless steel 2101 [D]. Shanghai: Fudan University, 2010: 43
张丽华. 经济型双相不锈钢2101的腐蚀行为研究 [D]. 上海: 复旦大学, 2010: 43
13 Zhang Y H, Hu Q, Dai M J, et al. Investigation of micro-electrochemical activities of oxide inclusions and microphases in duplex stainless steel and the implication on pitting corrosion [J]. Mater. Corros., 2020, 71: 876
14 Zhang Z Y, Han D, Jiang Y M, et al. Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304 [J]. Nucl. Eng. Des., 2012, 243: 56
15 Chen L D, Tan H, Wang Z Y, et al. Influence of cooling rate on microstructure evolution and pitting corrosion resistance in the simulated heat-affected zone of 2304 duplex stainless steels [J]. Corros. Sci., 2012, 58: 168
16 Lu S W, Hu Q, Liu J, et al. Parameter optimization for capillary microelectrode preparation [J]. J. Wuhan Univ. Sci. Technol., 2019, 42(4): 100
卢赛文, 胡骞, 刘静等. 毛细管微电极制备参数优化 [J]. 武汉科技大学学报, 2019, 42(4): 100
17 Zhang Z Y, Wang Z Y, Jiang Y M, et al. Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds [J]. Corros. Sci., 2012, 62: 42
18 Zhang Z Y, Zhang H Z, Zhao H, et al. Effect of prolonged thermal cycles on the pitting corrosion resistance of a newly developed LDX 2404 lean duplex stainless steel [J]. Corros. Sci., 2016, 103: 189
19 Guo Y J, Sun T Y, Hu J C, et al. Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002 [J]. J. Alloy. Compd., 2016, 658: 1031
20 Ha H Y, Jang M H, Lee T H, et al. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel [J]. Corros. Sci., 2014, 89: 154
21 Ha H Y, Jang M H, Lee T H, et al. Understanding the relation between phase fraction and pitting corrosion resistance of UNS S32750 stainless steel [J]. Mater. Charact., 2015, 106: 338
[1] JI Kaiqiang, LI Guangfu, ZHAO Liang. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[2] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[3] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[4] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[5] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[7] ZHAN Dongdong, WANG Cheng, QIAN Jiyu, WANG Wen, ZHOU Tong, ZHU Shenglong, WANG Fuhui. Effect of Trace Cl- and Cu2+ Ions on Corrosion Behavior of 3A21 Al-alloy in Ethylene Glycol Coolant[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[8] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[13] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[14] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[15] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
No Suggested Reading articles found!