Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 659-666    DOI: 10.11902/1005.4537.2020.244
Current Issue | Archive | Adv Search |
Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen
MA Qi1, CAI Jingshun1(), MU Song1, ZHOU Xiaocheng1, LIU Kai1, LIU Jianzhong1, LIU Jiaping1,2
1.State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd. , Nanjing 211103, China
2.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Download:  HTML  PDF(9320KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite organic amino-alcohol compound (ZX) and N,N-dimethylethanolamine (DMEA) are prepared as corrosion inhibitors for reinforced steel in simulated conceret pore solution or mortar specimens. Then their corrosion inhibition performance was assessed by means of dry and wet cycle experiments, liner polarization resistance (LPR) measurements, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The results indicate that inhibitors ZX and DMEA present good inhibition efficiency for steel bar in the simulated pore solutions of concrete. The corrosion inhibition efficiency by the pore solution with the dosage of 0.75%ZX and DMEA is 98.63% and 78.05% respectively in the dry-wet cycle experiments. The electrochemical experiments show that the corrosion inhibition effect of inhibitor on steel is more obvious with the increasing inhibitor dosage, whilst the inhibition effect of ZX is better than DMEA by the same dosage. Furthermore, the mortar experiments reveal that with the increase of the number of cycles, the weakening of corrosion inhibition effect of DMEA is obvious, whilst the organic amino-alcohol inhibitor can effectively delay the time for corrosion initiation of the steel bar, thus ZX is better than DMEA in corrosion inhibition within mortar specimens.

Key words:  composite organic compound      N      N-dimethylethanolamine      simulated conceret pore solution      corrosion inhibitor      mortar specimen     
Received:  25 November 2020     
ZTFLH:  TU528  
Fund: Key R&D Program of Guangdong Province(2019B111106002);Science and Technology R&D Program of China Railway Corporation(P2018G047);National Natural Science Foundation of China(51908254);Science and Technology Projects of Housing and Urban-Rural Construction Department of Jiangsu Province(2018JH017)
Corresponding Authors:  CAI Jingshun     E-mail:  caijingshun@gmail.com
About author:  CAI Jingshun, E-mail: caijingshun@gmail.com

Cite this article: 

MA Qi, CAI Jingshun, MU Song, ZHOU Xiaocheng, LIU Kai, LIU Jianzhong, LIU Jiaping. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 659-666.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.244     OR     https://www.jcscp.org/EN/Y2021/V41/I5/659

InhibitorMass fraction / %A / %R / %IE / %
Blank0.0052.10------
ZX0.307.3714.1585.85
0.454.298.2391.77
0.602.134.0995.91
0.750.711.3798.63
DMEA0.3019.5637.5462.46
0.4515.7230.1769.83
0.6012.9524.8675.14
0.7511.4421.9578.05
Table 1  Corrosion results of Q235 steel rebar after dry and wet tests in SCPsolutions containing different concentrations of ZX and DMEA
Fig.1  SEM micrographs of Q235 rebar samples before (a) and after immersion in SCP solutions without (b) and with 0.6%ZX (c) and 0.6%DMEA (d)
Fig.2  Evolutions of corrosion potential (a) and corrosion current density (b) of Q235 rebar samples during immersion in SCP solution without and with various inhibitors
Fig.3  Nyquist plots of Q235 rebar samples in SCP solutions without and with different concentrations of DMEA (a) and ZX (b)
Fig.4  Equivalent circuit used to fit EIS results
InhibitorMass fraction / %Rs / Ω·cm2CPE1-Y0 / μΩ-1·S-n·cm-2Rf / kΩ·cm2CPE2-Y0 / μΩ-1·S-n·cm-2Rct / kΩ·cm2IE / %
Blank0.008.70689.461.5476.306.73---
DMEA0.308.26463.153.9150.1614.9556.15
0.458.91390.475.7850.2522.6670.92
0.609.30350.915.9643.6927.6375.38
0.7510.60234.126.3440.1932.0678.46
ZX0.309.45189.437.0132.4565.3288.56
0.4510.11145.757.7930.19143.3794.52
0.6010.45106.318.6929.45264.5996.97
0.7511.2376.649.1521.76456.8698.22
Table 2  Fitting electrochemical parameters of EIS
Fig.5  Evolutions of corrosion potential (a) and linear polarization resistance (b) of Q235 rebar samples in the mortars without and with different corrosion inhibitors
Fig.6  SEM images of original rebar (a) and rebar samples in the mortars without (b) and with 0.75% DMEA (b) or 0.75%ZX (c) after 90 wet and dry cycles
Fig.7  Macrophotographs of Q235 rebar samples in the mortars without (a) and with 0.75%DMEA (b) or 0.75%ZX (c) after 90 wet and dry cycles
1 Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536
2 Zhang Y, Jiang L X. Research trends of concrete carbonation and reinforcement corrosion [J]. Fuzhou Univ. (Nat. Sci.), 1996, 24(S): 18
张誉, 蒋利学. 混凝土碳化和钢筋锈蚀研究动态 [J]. 福州大学学报 (自然科学版), 1996, 24(): 18
3 Liu Y C, Sun B Y. Technique and usage of inspecting steel bar corrosion in hydraulic concrete [J]. Zhejiang Hydrotech., 2003, 38(2): 38
刘超英, 孙伯永. 水工混凝土中钢筋锈蚀检测技术及应用 [J]. 浙江水利科技, 2003, 38(2): 38
4 Zhang Q H, Xin J. Inhibiting effect of calcium nitrite on rebar chloride-attack corrosion [J]. Mater. Prot., 1999, 32(11): 7
张青红, 辛剑. 亚硝酸钙对混凝土结构中钢筋氯腐蚀的缓蚀作用 [J]. 材料保护, 1999, 32(11): 7
5 Hong N F. Corrosion and protective technology of rebar in concrete-rebar inhibitor idmixture and cathode protection [J]. Ind. Constr., 2000, 30(1): 57
洪乃丰. 混凝土中钢筋腐蚀与防护技术 (6)—钢筋阻锈剂和阴极保护 [J]. 工业建筑, 2000, 30(1): 57
6 Fajardo G, Escadeillas G, Arliguie G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water [J]. Corros. Sci., 2006, 48: 110
7 Chaussadent T, Nobel-Pujol V, Farcas F, et al. Effectiveness conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete reinforcements [J]. Cem. Concr. Res., 2006, 36: 556
8 Lee H S, Ryu H S, Park W J, et al. Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors [J]. Materials, 2015, 8: 251
9 Ma Q, Qi S J, He X H, et al. 1, 2, 3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and computational chemistry studies [J]. Corros. Sci., 2017, 129: 91
10 Zhang H, Liu Z Y. Study on the anticorrosion of alcamines inhibitor on reinforcement in simulated concrete pore solution [J]. Concrete, 2014, 295(5): 87
张鹤, 刘宗玉. 醇胺类有机物对混凝土模拟孔溶液中钢筋的阻锈作用研究 [J]. 混凝土, 2014, 295(5): 87
11 Jamil H E, Shrii A, Boulif R, et al. Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor [J]. Cem. Concr. Compos., 2005, 27: 671
12 Angst U M, Elsener B, Larsen C K, et al. Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values [J]. Corros. Sci., 2011, 53: 1451
13 Shi H S, Wang Q. Research on service life prediction of marine concrete [J]. J. Build. Mater., 2004, 7: 161
施惠生, 王琼. 海工混凝土使用寿命预测研究 [J]. 建筑材料学报, 2004, 7: 161
14 Yao J C, Yao Y, Wang L, et al. Research progress of chloride ion transport in concrete under the action of multi-factor coupling [J]. Low Temper. Archit. Technol., 2011, (4): 5
孙继成, 姚燕, 王玲等. 多因素耦合作用下混凝土中氯离子传输的研究进展 [J]. 低温建筑技术, 2011, (4): 5
15 Amey S L, Johnson D A, Miltenberger M A, et al. Predicting the service life of concrete marine structures: an environmental methodology [J]. ACI Struct. J., 1998, 95: 205
16 Sun G W, Zhang Y S, Sun W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete [J]. Constr. Build. Mater., 2011, 25: 3820
17 Sagüés A A, Kranc S C, Moreno E I. Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete [J]. Electrochim. Acta, 1996, 41: 1239
18 Ministry of Transport of the People's Republic of China. Corrosion inhibitor for reinforcing steel in concrete [S]. Beijing: China Communications Press, 2018
中华人民共和国交通运输部. 钢筋混凝土阻锈剂 [S]. 北京: 人民交通出版社, 2018
19 Chen Y X, Feng L J, Cai J B, et al. Inhibition effect of a new composite organic inhibitor on corrosion of steel rebar in simulated concrete solution or inside mortar specimen [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 343
陈云翔, 冯丽娟, 蔡建宾等. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制 [J]. 中国腐蚀与防护学报, 2018, 38: 343
20 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
21 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
达波, 余红发, 麻海燕等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
22 Zhang C, Duan H B, Zhao J M. Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution [J]. Corros. Sci., 2016, 112: 160
23 Xiong C S, Li W H, Jin Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution [J]. Corros. Sci., 2018, 139: 275
24 Al-Mehthel M, Al-Dulaijan S, Al-Idi S H, et al. Performance of generic and proprietary corrosion inhibitors in chloride-contaminated silica fume cement concrete [J]. Constr. Build. Mater., 2009, 23: 1768
25 Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
26 Abd El Haleem S M, Abd El Wanees S, Abd El Aal E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions [J]. Corros. Sci., 2010, 52: 292
27 Zhou X, Yang H Y, Wang F H. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5%NaCl saturated Ca(OH)2 solution [J]. Corros. Sci., 2012, 54: 193
28 Alonso C, Castellote M, Andrade C. Chloride threshold dependence of pitting potential of reinforcements [J]. Electrochim. Acta, 2002, 47: 3469
29 Ormellese M, Lazzari L, Goidanich S, et al. A study of organic substances as inhibitors for chloride-induced corrosion in concrete [J]. Corros. Sci., 2009, 51: 2959
30 Al-Sodani K A A, Al-Amoudi O S B, Maslehuddin M, et al. Efficiency of corrosion inhibitors in mitigating corrosion of steel under elevated temperature and chloride concentration [J]. Constr. Build. Mater., 2018, 163: 97
[1] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[2] LUO Weiwen, JI Tao, LIN Kui. Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[3] TONG Yao, SONG Qining, LI Huilin, XU Nan, BAO Yefeng, ZHANG Genyuan, ZHAO Lijuan. A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
[4] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[5] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[6] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[7] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[8] CHEN Xuandong, ZHANG Qing, GU Xin, LI Xing. Probability Analysis on Service Life Prediction of Reinforced Concrete Structures[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[9] JI Kaiqiang, LI Guangfu, ZHAO Liang. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[10] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[11] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[12] WANG Pengsheng, LI Chuanfu, NI Jingxu. Durability Analysis and Lifetime Calculation of Silane Impregnated Concrete Structure[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[13] ZHU Zhe, CAI Jingshun, HONG Jinxiang, MU Song, ZHOU Xiaocheng, MA Qi, CHEN Cuicui. Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[14] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[15] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
No Suggested Reading articles found!