Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 151-160    DOI: 10.11902/1005.4537.2020.026
Current Issue | Archive | Adv Search |
Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry
HE Jing1, YANG Chuntian2, LI Zhong2()
1.Infrastructure Management Division of Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(1758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper focuses on the present research progress of Micro biologically influence corrosion (MIC) problems of concrete and metal materials and especially the relevant MIC mechanisms, including the biological sulfuric acid corrosion mechanism against concrete materials, and classical corrosion mechanisms and extracellular electron transfer mechanism against metal materials. This paper also introduces research progress of MIC protection methods in building industry, including concrete modification, protective coatings and bactericides. This paper might provide a guidance for further research on MIC mechanisms and protective methods against MIC problems in the building industry.

Key words:  building industry      microbiologically influenced corrosion      concrete      metal material      corrosion protection     
Received:  26 February 2020     
ZTFLH:  O646  
Fund: Fundamental Research Funds for the Central Universities(N180203019);National Natural;Science Foundation of China(51901039)
Corresponding Authors:  LI Zhong     E-mail:  lizhong@mail.neu.edu.cn
About author:  LI Zhong, E-mail: lizhong@mail.neu.edu.cn

Cite this article: 

HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 151-160.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.026     OR     https://www.jcscp.org/EN/Y2021/V41/I2/151

Fig.1  Schematic illustration of DET and MET in MIC by sessile SRB cells (“Med (red)” denotes the reduced form of an electron mediator and “Med (ox)” denotes the oxidized form)[2]
1 Little B, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys [J]. Int. Mater. Rev., 1991, 36: 253
2 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
3 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
4 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 411
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 411
5 Videla H A. Prevention and control of biocorrosion [J]. Int. Biodeterior. Biodegrad., 2002, 49: 259
6 Aktas D F, Sorrell K R, Duncan K E, et al. Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: the impact of different ultra low sulfur diesels and bioaugmentation [J]. Int. Biodeterior. Biodegrad., 2017, 118: 45
7 Giacobone A F F, Rodriguez S A, Burkart A L, et al. Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10 [J]. Int. Biodeterior. Biodegrad., 2011, 65: 1161
8 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
9 Chen X, Li S B, Zheng Z S, et al. Microbial corrosion behavior of X70 pipeline steel in an artificial solution for simulation of soil corrosivity at Daqing area [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 175
陈旭, 李帅兵, 郑忠硕等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 175
10 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
11 Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
12 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
13 Li H B, Yang C T, Zhou E Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. J. Mater. Sci. Technol., 2017, 33: 1596
14 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
15 Jiang G M, Wightman E, Donose B C, et al. The role of iron in sulfide induced corrosion of sewer concrete [J]. Water Res., 2014, 49: 166
16 Yuan H F, Dangla P, Chatellier P, et al. Degradation modeling of concrete submitted to biogenic acid attack [J]. Cem. Concr. Res., 2015, 70: 29
17 Han J Y, Gao Z H, Zhang X W. Non-uniform damage of primary sedimentation pool concrete by city sewage [J]. China Civ. Eng. J., 2005, 38(7): 45
韩静云, 郜志海, 张小伟. 城市污水对初沉池混凝土不均衡损伤特性研究 [J]. 土木工程学报, 2005, 38(7): 45
18 O’Connell M, McNally C, Richardson M G. Biochemical attack on concrete in wastewater applications: a state of the art review [J]. Cem. Concr. Compos., 2010, 32: 479
19 Wahshat T M. Sulfur mortar and polymer modified sulfur mortar lining for concrete sewer pipe [D]. Iowa State: Iowa State University, 2001
20 Sydney R, Esfandi E, Surapaneni S. Control concrete sewer corrosion via the crown spray process [J]. Water Environ. Res., 1996, 68: 338
21 Little B J, Lee J S. Microbiologically influenced corrosion: An update [J]. Int. Mater. Rev., 2014, 59: 384
22 Qi P, Zhang D, Wang Y, et al. Microbiologically influenced corrosion and protection of steel structure in wharf [J]. Equip. Environ. Eng., 2018, 15(10): 45
戚鹏, 张盾, 王毅等. 码头钢结构的微生物腐蚀及其防护 [J]. 装备环境工程, 2018, 15(10): 45
23 2050 China Energy and Carbon Emission Research Group. China Energy and CO2 Emissions Report [M]. Beijing: Science Press, 2009
2050中国能源和碳排放研究课题组. 2050中国能源和碳排放报告 [M]. 北京: 科学出版社, 2009
24 Parker C D. Species of sulphur bacteria associated with the corrosion of concrete [J]. Nature, 1947, 159: 439
25 Parker C D. The corrosion of concrete [J]. Aust. J. Exp. Biol. Med. Sci., 1945, 23: 81
26 Wei S P, Sanchez M, Trejo D, et al. Microbial mediated deterioration of reinforced concrete structures [J]. Int. Biodeterior. Biodegrad., 2010, 64: 748
27 Vupputuri S, Fathepure B Z, Wilber G G, et al. Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration [J]. Int. Biodeterior. Biodegrad., 2015, 97: 128
28 Kennedy J L. Oil and Gas Pipeline Fundamentals [M]. Tulsa, Okla: PennWell Pub. Co., 1984
29 Błaszczyński T Z. The influence of crude oil products on RC structure destruction [J]. J. Civ. Eng. Manag., 2011, 17: 146
30 Tian B, Cohen M D. Does gypsum formation during sulfate attack on concrete lead to expansion? [J]. Cem. Concr. Res., 2000, 30: 117
31 Mori T, Nonaka T, Tazaki K, et al. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes [J]. Water Res., 1992, 26: 29
32 Roberts D J, Nica D, Zuo G, et al. Quantifying microbially induced deterioration of concrete: initial studies [J]. Int. Biodeterior. Biodegrad., 2002, 49: 227
33 Yoshida N, Murooka Y, Ogawa K. Heavy metal particle resistance in Thiobacillus intermedius 13-1 isolated from corroded concrete [J]. J. Ferment. Bioeng., 1998, 85: 630
34 Yousefi A, Allahverdi A, Hejazi P. Accelerated biodegradation of cured cement paste by Thiobacillus species under simulation condition [J]. Int. Biodeterior. Biodegrad., 2014, 86: 317
35 Emtiazi G, Habibi M H, Setareh M. Isolation of some new sulphur bacteria from activated sludge [J]. J. Appl. Bacteriol., 1990, 69: 864
36 Maeda T, Negishi A, Komoto H, et al. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants [J]. J. Biosci. Bioeng., 1999, 88: 300
37 Diercks M, Sand W, Bock E. Microbial corrosion of concrete [J]. Experientia, 1991, 47: 514
38 Leemann A, Lothenbach B, Hoffmann C. Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling [J]. Cem. Concr. Res., 2010, 40: 1157
39 Gu J D, Ford T E, Berke N S, et al. Biodeterioration of concrete by the fungus Fusarium [J]. Int. Biodeterior. Biodegrad., 1998, 41: 101
40 Giannantonio D J, Kurth J C, Kurtis K E, et al. Molecular characterizations of microbial communities fouling painted and unpainted concrete structures [J]. Int. Biodeterior. Biodegrad., 2009, 63: 30
41 Bertron A, Escadeillas G, Duchesne J. Cement pastes alteration by liquid manure organic acids: Chemical and mineralogical characterization [J]. Cem. Concr. Res., 2004, 34: 1823
42 Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants [J]. Water Res., 2007, 41: 1110
43 Aviam O, Bar-Nes G, Zeiri Y, et al. Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste [J]. Appl. Environ. Microbiol., 2004, 70: 6031
44 Sanchez-Silva M, Rosowsky D V. Biodeterioration of construction materials: state of the art and future challenges [J]. J. Mater. Civ. Eng., 2008, 20: 352
45 Ismail N, Nonaka T, Noda S, et al. Effect of carbonation on microbial corrosion of concretes [J]. J. Construct. Man. Eng., 1993, 474: 133
46 Joseph A P, Keller J, Bustamante H, et al. Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration [J]. Water Res., 2012, 46: 4235
47 Islander R L, Devinny J S, Mansfeld F, et al. Microbial ecology of crown corrosion in sewers [J]. J. Environ. Eng., 1991, 117: 751
48 Allahverdi A, Škvára F. Acidic corrosion of hydrated cement based materials. Part 1. Mechanism of the phenomenon [J]. Ceram. Silik., 2000, 44: 114
49 Gabrisová A, Havlica J, Sahu S. Stability of calcium sulphoaluminate hydrates in water solutions with various pH values [J]. Cem. Concr. Res., 1991, 21: 1023
50 Satoh H, Odagiri M, Ito T, et al. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system [J]. Water Res., 2009, 43: 4729
51 Rabus R, Hansen T A, Widdel F. Dissimilatory sulfate- and sulfur-reducing prokaryotes [A].
Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes [M]. New York: Springer, 2006: 659
52 Gehrke T, Sand W. Interactions between microorganisms and physiochemical factors cause MIC of steel pilings in harbors (ALWC) [A]. Paper Presented at the Corrosion 2003 [C]. San Diego, California, 2003
53 Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
54 Maruthamuthu S, Kumar B D, Ramachandran S, et al. Microbial corrosion in petroleum product transporting pipelines [J]. Ind. Eng. Chem. Res., 2011, 50: 8006
55 Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
56 Okeniyi J O, Loto C A, Popoola A P I. Inhibition of steel-rebar corrosion in industrial/microbial simulating-environment by Morinda lucida [J]. Solid State Phenom., 2015, 227: 281
57 Kawaai K, Nishida K T, Saito A, et al. Corrosion resistance of steel bars in mortar mixtures mixed with organic matter, microbial or other [J]. Cem. Concr. Res. 2019, 124: 105822
58 Javaherdashti R. A brief review of general patterns of MIC of carbon steel and biodegradation of concrete [J]. IUFS J. Biol., 2009, 68: 65
59 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corr. Sci., 2018, 130: 1
60 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
61 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
62 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
63 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
64 Hamilton A W. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis [J]. Biofouling, 2003, 19: 65
65 Miyata N, Tani Y, Maruo K, et al. Manganese(IV) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(II) oxidase activity [J]. Appl. Environ. Microbiol., 2006, 72: 6467
66 Vroom J M, De Grauw K J, Gerritsen H C, et al. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy [J]. Appl. Environ. Microbiol., 1999, 65: 3502
67 Kryachko Y, Hemmingsen S M. The role of localized acidity generation in microbially influenced corrosion [J]. Curr. Microbiol., 2017, 74: 870
68 Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
69 Tan J L, Goh P C, Blackwood D J. Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens [J]. Corros. Sci., 2017, 119: 102
70 Ching T H, Yoza B A, Wang R J, et al. Biodegradation of biodiesel and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12 [J]. Int. Biodeterior. Biodegrad., 2016, 108: 122
71 Dall’Agnol L T, Cordas C M, Moura J J G. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism [J]. Bioelectrochemistry, 2014, 97: 43
72 Padmavathi A R, Periyasamy M, Pandian S K. Assessment of 2, 4-Di-tert-butylphenol induced modifications in extracellular polymeric substances of Serratia marcescens [J]. Bioresour. Technol., 2015, 188: 185
73 Stewart P S, Franklin M J. Physiological heterogeneity in biofilms [J]. Nat. Rev. Microbiol., 2008, 6: 199
74 San N O, Nazır H, Dönmez G. Microbially influenced corrosion and inhibition of nickel-zinc and nickel-copper coatings by Pseudomonas aeruginosa [J]. Corros. Sci., 2014, 79: 177
75 Mehanna M, Basséguy R, Délia M L, et al. Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations [J]. Electrochem. Commun., 2010, 12: 724
76 Jin J T, Guan Y T. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes [J]. Bioresour. Technol., 2014, 169: 387
77 Von Wolzogen Kuhr C A H, Van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil [J]. Water, 1934, 18: 147
78 Whonchee L. Corrosion of mild steel under an anaerobic biofilm [D]. Bozeman: Montana State University, 1990
79 Gu T Y, Nesic S, Zhao K L. A practical mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory [D]. Georgia: NACE International, 2009
80 Gu T Y, Xu D K. Demystifying MIC mechanisms [D]. Houston, TX: NACE International, 2010
81 Xu D K, Gu T Y. Bioenergetics explains when and why more severe MIC pitting by SRB can occur [D]. Texas: NACE International, 2011
82 Torres C I, Marcus A K, Lee H S, et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria [J]. FEMS Microbiol. Rev., 2010, 34: 3
83 Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion [J]. Microb. Biotechnol., 2016, 9: 141
84 Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE [J]. Environ. Sci. Technol., 2007, 41: 2554
85 Usher K M, Kaksonen A H, Cole I, et al. Critical review: microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
86 Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098
87 Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
88 Abdolahi A, Hamzah E, Ibrahim Z, et al. Localised corrosion of mild steel in presence of Pseudomonas aeruginosa biofilm [J]. Corros. Eng. Sci. Technol., 2015, 50: 538
89 Cragnolino G, Tuovinen O H. The role of sulphate-reducing and sulphur oxidizing bacteria in the localized corrosion of iron-base alloys-a review [J]. Int. Biodegrad., 1984, 20: 4
90 Pope D H, Duquette D J, Johannes A H, et al. Microbiologically influenced corrosion of industrial alloys [J]. Mater. Perform., 1983, 23: 14
91 Vincke E, Van Wanseele E, Monteny J, et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete [J]. Int. Biodeterior. Biodegrad., 2002, 49: 283
92 Beeldens A, Monteny J, Vincke E, et al. Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars [J]. Cem. Concr. Compos., 2001, 23: 47
93 Yang Y, Ji T, Lin X J, et al. Biogenic sulfuric acid corrosion resistance of new artificial reef concrete [J]. Construct. Build. Mater., 2018, 158: 33
94 Basheer P A M, Basheer L, Cleland D J, et al. Surface treatments for concrete: assessmentmethods and reported performance [J]. Construct. Build. Mater., 1997, 11: 413
95 Almusallam A A, Khan F M, Dulaijan S U, et al. Effectiveness of surface coatings in improving concrete durability [J]. Cem. Concr. Compos., 2003, 25: 473
96 Diamanti M V, Brenna A, Bolzoni F, et al. Effect of polymer modified cementitious coatings on water and chloride permeability in concrete [J]. Construct. Build. Mater., 2013, 49: 720
97 Zerda A S, Lesser A J. Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior [J]. J. Polym. Sci., 2001, 39B: 1137
98 Kumar A P, Depan D, Tomer N S, et al. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives [J]. Prog. Polym. Sci., 2009, 34: 479
99 Choudalakis G, Gotsis A D. Permeability of polymer/clay nanocomposites: A review [J]. Eur. Polym. J., 2009, 45: 967
100 Scarfato P, Di Maio L, Fariello M L, et al. Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement [J]. Cem. Concr. Compos., 2012, 34: 297
101 Woo R S C, Zhu H G, Chow M M K, et al. Barrier performance of silane-clay nanocomposite coatings on concrete structure [J]. Compos. Sci. Technol., 2008, 68: 2828
102 Woo R S C, Zhu H G, Leung C K Y, et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: part II residual mechanical properties [J]. Compos. Sci. Technol., 2008, 68: 2149
103 Hackman I, Hollaway L. Epoxy-layered silicate nanocomposites in civil engineering [J]. Composites, 2006, 37A: 1161
104 Woo R S C, Chen Y H, Zhu H G, et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: photo-degradation [J]. Compos. Sci. Technol., 2007, 67: 3448
105 Reddy B, Sykes J M. Degradation of organic coatings in a corrosive environment: A study by scanning Kelvin probe and scanning acoustic microscope [J]. Prog. Org. Coat., 2005, 52: 280
106 Zhang X W, Zhang X. Present and prospect of microbial corrosion prevention of concrete [J]. Mater. Prot., 2005, 38(11): 44
张小伟, 张雄. 混凝土微生物腐蚀防治研究现状和展望 [J]. 材料保护, 2005, 38(11): 44
107 Cowan M M, Abshire K Z, Houk S L, et al. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel [J]. J. Ind. Microbiol. Biotechnol., 2003, 30: 102
108 Haile T, Nakhla G. A novel zeolite coating for protection of concrete sewers from biological sulfuric acid attack [J]. Geomicrobiol. J., 2008, 25: 322
109 Haile T, Nakhla G, Allouche E. Evaluation of the resistance of mortars coated with silver bearing zeolite to bacterial-induced corrosion [J]. Corros. Sci., 2008, 50: 713
110 Hewayde E H, Nakhla G F, Allouche E N, et al. Beneficial impact of coatings on biological generation of sulfide in concrete sewer pipes [J]. Struct. Infrastruct. Eng., 2007, 3: 267
111 Haile T, Nakhla G, Allouche E, et al. Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes [J]. Corros. Sci., 2010, 52: 45
112 Davis M E. Zeolite-based catalysts for chemicals synthesis [J]. Microp. Mesop. Mater., 1998, 21: 173
113 Biškup B, Subotić B. Removal of heavy metal Ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A [J]. Sep. Sci. Technol., 2005, 39: 925
114 Rivera-Garza M, Olguı́n M T, Garcı́a-Sosa I, et al. Silver supported on natural Mexican zeolite as an antibacterial material [J]. Microp. Mesop. Mater., 2000, 39: 431
115 Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate [J]. Appl. Environ. Microbiol., 2003, 69: 4278
116 Top A, Ülkü S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity [J]. Appl. Clay Sci., 2004, 27: 13
117 McDonnell A M P, Beving D, Wang A, et al. Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation [J]. Adv. Funct. Mater., 2005, 15: 336
118 Finnegan M, Linley E, Denyer S P, et al. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms [J]. J. Antimicrob. Chemother., 2010, 65: 2108
119 Kahrilas G A, Blotevogel J, Stewart P S, et al. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity [J]. Environ. Sci. Technol., 2015, 49: 16
120 Xu D, Jia R, Li Y, et al. Advances in the treatment of problematic industrial biofilms [J]. World J. Microbiol. Biotechnol., 2017, 33: 97
121 Wu Q L, Guo W Q, Bao X, et al. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment [J]. Bioresour. Technol., 2017, 239: 518
122 Gorman S P, Scott E M, Russell A D. Antimicrobial activity, uses and mechanism of action of glutaraldehyde [J]. J. Appl. Bacteriol., 1980, 48: 161
123 Struchtemeyer C G, Morrison M D, Elshahed M S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells [J]. Int. Biodeterior. Biodegrad., 2012, 71: 15
124 Bautista L F, Vargas C, González N, et al. Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel [J]. Fuel Process. Technol., 2016, 152: 56
125 Ioannou C J, Hanlon G W, Denyer S P. Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus [J]. Antimicrob. Agents Chemother., 2007, 51(1): 296
[1] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[2] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[7] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[12] Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[13] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[14] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[15] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
No Suggested Reading articles found!