Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 309-316    DOI: 10.11902/1005.4537.2017.139
Current Issue | Archive | Adv Search |
Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview
Xuekai TIAN1,2, Hailong WANG2(), Xudong CHENG1(), Xiaoyan SUN2
1 College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
2 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download:  HTML  PDF(1256KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chloride ingression is a major cause of the durability deterioration of reinforced concrete structures in marine environments or exposed to deicing salt. The inevitable cracks in real structure have a significant influence on the transport of chloride ions. The present available methods for artificially inducing concrete cracks in concrete structural parts were introduced, while the relevant advantages and disadvantages of these methods were demonstrated in this paper. On basis of the overview of experimental studies on the chloride ion diffusion in cracked concrete, the geometrical parameters of concrete cracks and their influence on chloride penetration were analyzed, the theory and numerical models of chloride ion transport in cracked concrete were summarized, and some recommendations for further research were given.

Key words:  concrete      crack geometrical parameter      chloride transport     
Received:  23 August 2017     
ZTFLH:  TU528.1  
Fund: Supported by National Natural Science Foundation of China (51579220 and 51378456) and Natural Science Foundation of Zhejiang Province (LY16E080004)

Cite this article: 

Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 309-316.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.139     OR     https://www.jcscp.org/EN/Y2018/V38/I4/309

Fig.1  Illustrations of four mechanics destructive methods: (a) splitting method[19], (b) three or four points bending[21], (c) expansive core method[27], (d) wedge splitting method[28]
Method for inducing cracks Method for Cl- transport testing w1 / μm w2 / μm Reference
Splitting method RCPT 200 --- [4]
Expansive core method Diffusion cell 50/30 200 [26,27]
Splitting method Steady migration test 30 80 [17]
Wedge splitting method Non-steady migration test / Diffusion cell 12/50 --- [33]
Flat-restraint shrinkage crack Diffusion cell 100 --- [9]
Splitting method Steady migration test --- 80 [19]
Notch method Non-steady migration test 50 100 [34]
Axial compression test Non-steady migration test 100 400 [35]
Table 1  Influence of crack width on the transport of Cl- in cracked concrete
[1] Mehta P K.Durability of concrete-fifty years of progress[J]. Spec. Publ., 1991, 126: 1
[2] Wang T M.Control of Cracking in Engineering Structure [M]. Beijing: China Architecture & Building Press, 1997(王铁梦. 工程结构裂缝控制 [M]. 北京: 中国建筑工业出版社, 1997)
[3] Wang K J, Jansen D C, Shah S P, et al.Permeability study of cracked concrete[J]. Cem. Concr. Res., 1997, 27: 381
[4] Aldea C M, Shah S P, Karr A.Effect of cracking on water and chloride permeability of concrete[J]. J. Mater. Civil Eng., 1999, 11: 181
[5] Picandet V, Khelidj A, Bellegou H.Crack effects on gas and water permeability of concretes[J]. Cem. Concr. Res., 2009, 39: 537
[6] Zhu C L, Jiang L H, Li W, et al.Recent developments on effect of cracking on chloride transport in concrete[J]. Concrete, 2014, (5): 19(朱承龙, 蒋林华, 李炜等. 裂缝对混凝土中氯离子传输的影响的研究进展[J]. 混凝土, 2014, (5): 19)
[7] Gérard B, Marchand J.Influence of cracking on the diffusion properties of cement-based materials: Part I: Influence of continuous cracks on the steady-state regime[J]. Cem. Concr. Res., 2000, 30: 37
[8] Zhang S P, Liu J P, Dong L F.Influence of shrinkage cracking on chloride ions transport of concrete[J]. J. Wuhan Univ. Technol., 2011, 33(6): 90(张士萍, 刘加平, 董良峰. 收缩裂缝对混凝土氯离子传输的影响[J]. 武汉理工大学学报, 2011, 33(6): 90)
[9] Jin Z Q, Hou B R, Zhao T J, et al.Influence of shrinkage cracks on chloride penetration and crabonation of concrete[J]. J. Civil, Archit. Environ. Eng., 2011, 33(1): 7(金祖权, 侯保荣, 赵铁军等. 收缩裂缝对混凝土氯离子渗透及碳化的影响[J]. 土木建筑与环境工程, 2011, 33(1): 7)
[10] Kobayashi K, Le Ahn D, Rokugo K.Effects of crack properties and water-cement ratio on the chloride proofing performance of cracked SHCC suffering from chloride attack[J]. Cem. Concr. Compos., 2016, 69: 18
[11] Boshoff W P, Altmann F, Adendorff C J, et al.A new approach for modelling the ingress of deleterious materials in cracked strain hardening cement-based composites[J]. Mater. Struct., 2016, 49: 2285
[12] Mu S, De Schutter G, Ma B G.Non-steady state chloride diffusion in concrete with different crack densities[J]. Mater. Struct., 2013, 46: 123
[13] Marsavina L, Audenaert K, De Schutter G, et al.Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Constr. Build. Mater., 2009, 23: 264
[14] Rodríguez O G, Hooton R D.Influence of cracks on chloride ingress into concrete[J]. Mater. J., 2003, 100: 120
[15] Gardner D, Jefferson A, Hoffman A.Investigation of capillary flow in discrete cracks in cementitious materials[J]. Cem. Concr. Res., 2012, 42: 972
[16] Ma B G, Mu S, De Schutter G.Non-steady state chloride migration and binding in cracked self-compacting concrete[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2013, 28: 921
[17] Djerbi A, Bonnet S, Khelidj A, et al.Influence of traversing crack on chloride diffusion into concrete[J]. Cem. Concr. Res., 2008, 38: 877
[18] Audenaert K, De Schutter G, Marsavina L.Influence of cracks and crack width on penetration depth of chlorides in concrete[J]. Eur. J. Environ. Civil Eng., 2009, 13: 561
[19] Jang S Y, Kim B S, Oh B H.Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cem. Concr. Res., 2011, 41: 9
[20] Win P P, Watanabe M, Machida A.Penetration profile of chloride ion in cracked reinforced concrete[J]. Cem. Concr. Res., 2004, 34: 1073
[21] Gowripalan N, Sirivivatnanon V, Lim C C.Chloride diffusivity of concrete cracked in flexure[J]. Cem. Concr. Res., 2000, 30: 725
[22] Şahmaran M.Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. J. Mater. Sci., 2007, 42: 9131
[23] Fu C Q, Lu S J, Jin X Y, et al.Influence of load crack on chloride diffusion in concrete[J]. Concrete, 2015, (2): 4(付传清, 卢沈杰, 金贤玉等. 荷载裂缝对混凝土中氯离子扩散的影响[J]. 混凝土, 2015, (2): 4)
[24] Lu C H, Zhang S F, Liu R G, et al.Influence of transverse flexural crack on chloride penetration in concrete[J]. J. Civil, Archit. Environ. Eng., 2013, 35(6): 124(陆春华, 张邵峰, 刘荣桂等. 横向弯曲裂缝对混凝土内氯离子侵蚀作用的影响[J]. 土木建筑与环境工程, 2013, 35(6): 124)
[25] Gagné R, François R, Masse P.Chloride penetration testing of cracked mortar samples [A]. Proceedings of the 3rd International Conference on Concrete Under Severe Condition: Environment and Ladin[C]. Vancouver, 2001: 198
[26] Ismail M, Toumi A, François R, et al.Effect of crack opening on the local diffusion of chloride in inert materials[J]. Cem. Concr. Res., 2004, 34: 711
[27] Ismail M, Toumi A, François R, et al.Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cem. Concr. Res., 2008, 38: 1106
[28] Abdalla H M, Karihaloo B L.Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests[J]. Mag. Concr. Res., 2003, 55: 133
[29] Yoon I S, Schlangen E, De Rooij M R, et al. The effect of cracks on chloride penetration into concrete [J]. Key Eng. Mater., 2007, 348/349: 769
[30] Yi S T, Hyun T Y, Kim J K.The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete[J]. Constr. Build. Mater., 2011, 25: 2576
[31] Zhang S P, Liu J P, Sun W, et al.Effect of cracking on transport properties in concrete[J]. Concrete, 2009, (12): 1(张士萍, 刘加平, 孙伟等. 裂缝对混凝土中介质传输的影响[J]. 混凝土, 2009, (12): 1)
[32] Jin W L, Yan Y D, Wang H L, et al.Simplified analysis of chloride diffusion into saturated and cracked concrete[J]. J. Transp. Sci. Eng., 2010, 26(1): 23(金伟良, 延永东, 王海龙等. 饱和状态下开裂混凝土中氯离子扩散简化分析[J]. 交通科学与工程, 2010, 26(1): 23)
[33] Yoon I S, Schlangen E. Long/short term experimental study on chloride penetration in cracked concrete[J]. Key Eng. Mater., 2010, 417/418: 765
[34] Li Y, Chen X H, Jin L, et al.Experimental and numerical study on chloride transmission in cracked concrete[J]. Constr. Build. Mater., 2016, 127: 425
[35] Wang H L, Dai J G, Sun X Y, et al.Characteristics of concrete cracks and their influence on chloride penetration[J]. Constr. Build. Mater., 2016, 107: 216
[36] Zhang S P, Liu J P, Miao C W.Influence of cracking on transport of chloride in concrete[J]. J. Build. Mater., 2011, 14: 550(张士萍, 刘加平, 缪昌文. 预置表面裂缝对混凝土中氯离子传输的影响[J]. 建筑材料学报, 2011, 14: 550)
[37] Audenaert K, Marsavina L, De Schutter G.Influence of cracks on the service life of concrete structures in a marine environment[J]. Key Eng. Mater., 2009, 399: 153
[38] Mu S, Ma B G, De Schutter G, et al. Chloride binding of self-compacting concrete with different crack depths under electric migration test [J]. Appl. Mech. Mater., 2012, 105-107: 957
[39] Jacobsen S, Marchand J, Boisvert L.Effect of cracking and healing on chloride transport in OPC concrete[J]. Cem. Concr. Res., 1996, 26: 869
[40] Ishida T, Iqbal P O, Anh H T L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cem. Concr. Res., 2009, 39: 913
[41] Darma I S, Sugiyama T, Promentilla M A B. Application of X-ray CT to study diffusivity in cracked concrete through the observation of tracer transport[J]. J. Adv. Concr. Technol., 2013, 11: 266
[42] Greenwald M.Beyond benchmarking—how experiments and simulations can work together in plasma physics[J]. Comput. Phys. Commun., 2004, 164: 1
[43] Zhang Y.Mechanics of chloride ions transportion in concrete [D]. Hangzhou: Zhejiang University, 2008(张奕. 氯离子在混凝土中的输运机理研究 [D]. 杭州: 浙江大学, 2008)
[44] Bentz D P, Garboczi E J, Lu Y, et al.Modeling of the influence of transverse cracking on chloride penetration into concrete[J]. Cem. Concr. Compos., 2013, 38: 65
[45] Du X L, Zhang R B, Jin L.Meso-scale numerical investigation on chloride diffusivity in cracked concrete[J]. J. Beijing Univ. Technol., 2015, 41(4): 542(杜修力, 张仁波, 金浏. 开裂混凝土中氯离子扩散行为的细观数值模拟[J]. 北京工业大学学报, 2015, 41(4): 542)
[46] Liu Q F, Yang J, Xia J, et al.A numerical study on chloride migration in cracked concrete using multi-component ionic transport models[J]. Comput. Mater. Sci., 2015, 99: 396
[47] Park S S, Kwon S J, Jung S H.Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Constr. Build. Mater., 2012, 29: 183
[48] Wang L C, Soda M, Ueda T.Simulation of chloride diffusivity for cracked concrete based on RBSM and truss network model[J]. J. Adv. Concr. Technol., 2008, 6: 143
[49] Yan Y D.Transportation of chloride ions in damaged and cracked concrete and its action [D]. Hangzhou: Zhejiang University, 2011(延永东. 氯离子在损伤及开裂混凝土内的输运机理及作用效应[D]. 杭州: 浙江大学, 2011)
[50] Fu C Q.Transport mechanism of chloride in concrete and corroded RC expansion model [D]. Hangzhou: Zhejiang University, 2012(付传清. 混凝土中氯盐的传输机理及钢筋锈胀模型 [D]. 杭州: 浙江大学, 2012)
[51] Ye H L, Jin N G, Jin X Y, et al.Model of chloride penetration into cracked concrete subject to drying-wetting cycles[J]. Constr. Build. Mater., 2012, 36: 259
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[6] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[7] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[8] Jianghong MAO,Weiliang JIN,Hua ZHANG,Chen XU,Jin XIA. Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[9] Xingguo FENG,Xiangyu LU,Yu ZUO,Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
[10] Xudong CHENG,Lianfang SUN,Zhifeng CAO,Xingji ZHU. Cracking Process Analysis of Concrete Cover Caused by Non-uniform Corrosion[J]. 中国腐蚀与防护学报, 2015, 35(3): 257-264.
[11] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[12] YUE Zhuwen,LI Jingpei,YANG Bo,SHAO Wei,LV Tao. Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
[13] DU Yali,ZHANG Junxi,JIANG Jun,YUAN Xujie,WANG Lingzhi,MA Xingchi. Corrosion Behavior of Reinforced Steel in Simulated Pore Solution with Gradual Augment of Cl- [J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.
[14] XU Chen,YUE Zengguo,JIN Weiliang. Research on Reinforcement Corrosion in Concrete by Using Electrochemical Frequency Modulation Technology[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[15] YUE Hanwei, MA Zhenzhu, BAO Yiwang. EROSIVE DAMAGE CHARACTERISTICS OF CONCRETE SURFACE BY SPHERE IMPACT METHOD[J]. 中国腐蚀与防护学报, 2011, 31(4): 309-314.
No Suggested Reading articles found!