Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 402-410    DOI: 10.11902/1005.4537.2017.024
Current Issue | Archive | Adv Search |
Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater
Juna CHEN1,2,3,Jiajia WU1,Peng WANG1,Dun ZHANG1()
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Naval Aeronautical University, Yantai 264001, China
Download:  HTML  PDF(1495KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 907 steel, as hull structural material, in seawater with mono-, and di-cultures of Desulfovibrio sp. (belonging to sulphate-reducing bacteria) and Vibrio alginolyticus was studied by means of weight loss- and electrochemical-method, as well as surface analysis methods. The results demonstrated that the corrosion rate of the steel in seawaters can be ranked increasingly as the following: Desulfovibrio sp.+Vibrio alginolyticus<Vibrio alginolyticusDesulfovibrio sp. The metabolism of Desulfovibrio sp. was inhibited due to the lack of nutrient substances and the presence of oxygen, and the corrosion rate of 907 steel in the seawater with Desulfovibrio sp. was the same as that in sterile seawater. However, Vibrio alginolyticus metabilited well in the test condition, and the presence of Vibrio alginolyticus may inhibit the corrosion of 907 steel due to that the oxygen was removed by metalism of Vibrio alginolyticus. The corrosion of 907 steel was further inhibited in the presence of mixed Desulfovibrio sp. and Vibrio alginolyticus, which may facilitate the formation of compact biofilm on the surface of 907 steel.

Key words:  hull structural material      microbiologically influenced corrosion      Desulfovibrio sp.      Vibrio alginolyticus     
Received:  14 February 2017     
Fund: Supported by National Key Research and Development Program of China (2016YFB0300604) and National Key Basic Research Program of China (2014CB643304)

Cite this article: 

Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 402-410.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.024     OR     https://www.jcscp.org/EN/Y2017/V37/I5/402

Fig.1  Digital photos of 907 steel samples after immersion in abiotic blank (a), Desulfovibrio sp. (b), Vibrio alginolyticus (c) and Desulfovibrio sp.+Vibrio alginolyticus (d) media for 8 d
Fig.2  Weight losses of 907 steel after immersion in different media for 8 d
Fig.3  Weight losses of 907 steel after immersion in Vibrio alginolyticus and Desulfovibrio sp.+Vibrio alginolyticus media for different time
Fig.4  Surface morphologies of 907 steel after immersion in abiotic blank (a), Desulfovibrio sp. (b), Vibrio alginolyticus (c) and Desulfovibrio sp.+Vibrio alginolyticus (d) media for 8 d
Fig.5  Surface morphologies of 907 steel after removal of the rust layers formed after immersion in abiotic blank (a), Desulfovibrio sp. (b), Vibrio alginolyticus (c) and Desulfovibrio sp.+Vibrio alginolyticus (d) media for 8 d
Fig.6  Variatios of OCP of 907 steel with time in different media
Fig.7  Nyquist (a~d) and Bode (a1~d1) plots of 907 steel after immersion in abiotic blank (a, a1), Desulfovibrio sp. (b, b1), Vibrio alginolyticus (c, c1) and Desulfovibrio sp.+Vibrio alginolyticus (d, d1) media for different time
Fig.8  Comparisons of Nyquist plots of 907 steel after immersion in different solutions for 4 h (a), 1 d (b), 2 d (c), 3 d (d), 4 d (e), 5 d (f), 6 d (g), 7 d (h) and 8 d (i)
Fig.9  Equivalent circuits for EIS of 907 steel immersed in abiotic blank, and Desulfovibrio sp. (a) and Vibrio alginolyticus and Desulfovibrio sp.+Vibrio alginolyticus (b)
Media Time / d Rs / Ωcm2 Qf / μFcm-2 nf Rf / Ωcm2 Qdl / μFcm-2 ndl Rct / Ωcm2
Abiotic blank 0.17 18.52 --- --- --- 61.9 0.8411 10200
1 19.53 --- --- --- 379.5 0.8136 5440
3 20.27 --- --- --- 359.7 0.8021 6707
5 21.41 --- --- --- 352.5 0.7907 7325
8 22.87 --- --- --- 355.9 0.7775 9159
Desulfovibrio sp. 0.17 17.9 --- --- --- 63.3 0.8559 9582
1 19.87 --- --- --- 518 0.8384 6309
3 20.52 --- --- --- 580 0.8257 10200
5 21.67 --- --- --- 619 0.8273 10800
8 22.3 --- --- --- 670 0.8255 7905
Vibrio alginolyticus 0.17 16.32 29.6 0.8973 19600 38.3 0.5539 32500
1 17.36 11.4 0.9724 271000 4.7 0.6117 678000
3 17.73 11.84 0.9722 438600 6.35 0.7169 567400
5 17.39 90.8 0.9422 12100 120.1 0.7684 8644
8 17.82 102.6 0.9436 12500 56.8 0.7872 34300
Desulfovibrio sp.+Vibrio alginolyticus 0.17 16.99 27 0.9008 13800 28.5 0.4806 37500
1 19.04 14.2 0.9552 39200 13.2 0.5111 320000
3 18.29 27.2 0.9519 32400 21.5 0.5915 123000
5 18.73 40.8 0.9552 26700 24.3 0.4525 140000
8 18.13 72.1 0.9485 19800 48.7 0.7682 54700
Table 1  Fitting electrochemical parameters of 907 steel after immersion in different solutions for different time
Fig.10  Changes of Rct of 907 steel immersed in different media with time
[1] Wade S A, Mart P L, Trueman A R.Microbiologically influenced corrosion in maritime vessels[J]. Corros. Mater., 2011, 36: 68
[2] Neihof R, May M.Microbial and particulate contamination in fuel tanks of naval ships[J]. Int. Biodeterior. Bull., 1983, 19: 59
[3] Haggett R D, Morchat R M.Microbiological contamination: biocide treatment in naval distillate fuel[J]. Int. Biodeter. Biodegr., 1992, 29: 87
[4] Chen D B, Hu Y L, Chen X Q.Progress of microbial influenced corrosion in warship[J]. J. Naval Univ. Eng., 2006, 18(1): 79
[4] (陈德斌, 胡裕龙, 陈学群. 舰船微生物腐蚀研究进展[J]. 海军工程大学学报, 2006, 18(1): 79)
[5] Wade S A, Mart P L, Trueman A R, et al.Investigation of the potential for MIC in the bilge waters of Australian naval vessels [A]. NACE International Corrosion 2009 Conference & Expo[C]. Atlanta, USA: NACE, 2009
[6] Javaherdashti R.Impact of sulphate-reducing bacteria on the performance of engineering materials[J]. Appl. Microbiol. Biot., 2011, 91: 1507
[7] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat. Rev. Microbiol., 2008, 6: 441
[8] Yuan S J, Liang B, Zhao Y, et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corros. Sci., 2013, 74: 353
[9] King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulphides[J]. Br. Corros. J., 1973, 8: 137
[10] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[11] Li H, Xu D, Li Y, et al.Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium desulfovibrio vulgaris[J]. PLoS One, 2015, 10: e0136183
[12] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[13] Liu F L, Zhang J, Sun C X, et al.The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud[J]. Corros. Sci., 2014, 83: 375
[14] Bermont-Bouis D, Janvier M, Grimont P A D, et al. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel[J]. J. Appl. Microbiol., 2007, 102: 161
[15] Korenblum E, Valoni E, Penna M, et al.Bacterial diversity in water injection systems of Brazilian offshore oil platforms[J]. Appl. Microbiol. Biotechnol., 2010, 85: 791
[16] Dang H, Chen R, Wang L, et al.Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon-and Zetaproteobacteria in Pacific Ocean coastal seawaters[J]. Environ. Microbiol., 2011, 13: 3059
[17] Lanneluc I, Langumier M, Sabot R, et al.On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel[J]. Int. Biodeterior. Biodegrad., 2015, 99: 55
[18] Dolla A, Fournier M, Dermoun Z.Oxygen defense in sulfate-reducing bacteria[J]. J. Biotechnol., 2006, 126: 87
[19] Lobo S A L, Melo A M P, Carita J N, et al. The anaerobe desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels[J]. FEBS Lett., 2007, 581: 433
[20] Gaylarde C C, Videla H A.Localised corrosion induced by a marine Vibrio[J]. Int. Biodeter., 1987, 23: 91
[21] Rolfe M D, Rice C J, Lucchini S, et al.Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[J]. J. Bacteriol., 2012, 194: 686
[1] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[4] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[5] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[6] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[7] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[8] XIAO Weilong, CHAI Ke, YANG Yuhui, WU Jinyi. EFFECT OF MICROBE ON THE CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 25 CARBON STEEL IN TROPICAL SEAWATER CONDITION[J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363.
[9] LI Songmei WANG Yanqing LIU Jianhua LIANG Xin. SYNERGISM EFFECT OF THIOBACILLUS FERROOXIDANS AND THIOBACILLUS THIOOXIDAN ON THE CORROSION BEHAVIOR OF STEEL Q235[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[10] DU Yili LI Jin GE Xiaopeng YUAN Weishuang. AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 321-324.
[11] ;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302 .
[12] . CORROSION BEHAVIOR OF 304 STAINLESS STEEL IN CULTURED MICROBIAL MEDIUM[J]. 中国腐蚀与防护学报, 2008, 28(1): 34-37 .
[13] Zehua Dong; Xingpeng Guo; Hongfang Liu. STUDY ON ELECTROCHEMISTRY CHARACTERISTICSIN MIC BY WIRE BEAM ELECTRODES[J]. 中国腐蚀与防护学报, 2002, 22(1): 48-53 .
No Suggested Reading articles found!