Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 63-69    DOI: 10.11902/1005.4537.2019.222
Current Issue | Archive | Adv Search |
Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface
XU Congmin(),LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Download:  HTML  PDF(3374KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the problem of serious environmental pollution caused by traditional chemical sterilization methods, the bactericidal enhancement effect and relevant mechanism of D-tyrosine in inhibiting and dispersing corrosive iron bacteria biofilm were studied by means of molecular biology, electrochemical detection and surface morphology observation. The results showed that D-tyrosine can successfully disperse the biofilm on the surface of the sample, turn which from adherent state to planktonic state entering the water system, thus inhibit the occurrence of microbial corrosion, while the bacteria of the planktonic iron bacteria film can be quickly killed by bactericide in the water. The bactericidal effect of the combined D-tyrosine and bactericide is very remarkable, the bactericidal rate can reach 98.73%, which is better than that of single bactericide, therefore, the dosage of bactericide can be decreased by 50%~70%. The results of surface analysis showed that the corrosion products were mainly iron oxides when bactericides and D-tyrosine were added to the solution, and the product film formed on the sample surface was loose and easy to fall off, which effectively slowed down the corrosion. The impedance spectroscopy showed that the polarization resistance of the sample increased and the corrosion rate decreased after adding D-tyrosine acids and bactericides. The above analysis showed that D-tyrosine had obvious enhancement effect on bactericides, played a very good role in inhibiting the microbial corrosion, and effectively alleviated the problems of microbial drug resistance and environmental pollution caused by the application of excessive microbicides.

Key words:  microbiologically influenced corrosion      D-tyrosine      iron bacteria      bactericide      bactericidal enhancement effect     
Received:  11 May 2019     
ZTFLH:  TG172.4  
Fund: National Natural Science Foundation of China(21808182);Research project of China Petroleum Science and Technology Innovation Fund(2018D-5007-0216);Shaanxi Key Disciplines Special Funding Project(YS37020203);Shaanxi Key Laboratory for Energy and Chemical Process Stre-ngthening(SXECPI201503);Subsidized Project of Innovation and Practice Ability Training for Postgraduates of Xi'an Petroleum University(YCS17111007);Subsidized Project of Innovation and Practice Ability Training for Postgraduates of Xi'an Petroleum University(YCS19113064)
Corresponding Authors:  Congmin XU     E-mail:  cmxu@xsyu.edu.cn

Cite this article: 

XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 63-69.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.222     OR     https://www.jcscp.org/EN/Y2020/V40/I1/63

NumberMixture ratioAnnual corrosion depth / mm·a-1Bactericidal rate / %Corrosion inhibition / %
1No fungicides0.258------
240 mg/L THPS0.19086.6726.36
340 mg/L glutaraldehyde0.21558.3316.67
440 mg/L D-tyrosine0.203021.32
540 mg/L THPS+1 mg/L D-tyrosine0.17898.7331.01
640 mg/L glutaraldehyde+ 1 mg/L D-tyrosine0.18588.3328.30
Table 1  Mass loss results of Q235B steel after corrosion for 7 d in Qinghai oilfield with IOB
Fig.1  Macrotopographies of Q235B steel after corrosion for 7 d in Qinghai oilfield with IOB: (a) first solution, (b) second solution, (c) third solution, (d) fourth solu-tion, (e) fifth solution, (f) sixth solution
Fig.2  SEM images (a~f) and EDS results (g~l) of Q235B steel after 7 d corrosion in fungicides and D-tyrosine (a, g), 40 mg/L THPS (b, h), 40 mg/L glutaraldehyde (c, i), 40 mg/L D-tyrosine (d, j), 40 mg/L THPS+1 mg/L D-tyrosine (e, k) and 40 mg/L glutaraldehyde+1 mg/L D-tyrosine (f, l)
Fig.3  Electrochemical impedance spectroscopy of Q235B steel etched in IOB-containing medium for 0 d (a), 3 d (b) and 7 d (c)
Fig.4  Equivalent circuit diagrams of Q235B steel after corrosion for 0, 3 and 7 d in medium containing IOB (a) represents 3 and 7 d no fungicides added, 3 and 7 d with 50 mg/L THPS, and 7 d with 40 mg/L THPS+1 mg/L D-tyrosine equivalent circuit diagram, (b) represents 0 d with 50 mg/L THPS, 0 and 7 d with 40 mg/L THPS+1mg/L D-tyrosine equivalent circuit diagram, (c) represents 0 d no fungicides added equivalent circuit diagram
Mixture ratioTime / dMatched circuit diagramRs / Ω·cm2Qf / F·cm-2Rf / Ω·cm2Qdl / F·cm-2Rt / Ω·cm2W
No fungicides added0Fig.4c4.1270.00013------5170.00022
3Fig.4a2.438------0.024284.34---
7Fig.4a1.537------0.0913953---
50 mg/L THPS0Fig.4b2.9790.002052960.006357.4---
3Fig.4a0.4107------0.183625---
7Fig.4a9.12------0.0977543.2---
40 mg/L THPS+1 mg/L D-tyrosine0Fig.4b7.160.00028590.30.0467188.3---
3Fig.4a7.22------0.01973372.8---
7Fig.4b15.680.0000874860.042759.2---
Table 2  EIS fitting results of Q235B corroded in SRB-containing medium for 0, 3 and 7 d
[1] Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
[1] (刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195)
[2] Li X, Zhu Q J, Zhou N, et al. Oil-gas pipe corrosion and protection [J]. Surf. Technol., 2017, 46(12): 206
[2] (李雪, 朱庆杰, 周宁等. 油气管道腐蚀与防护研究进展 [J]. 表面技术, 2017, 46(12): 206)
[3] Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
[4] Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
[4] (吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343)
[5] Sun F Y, Zhao G X, Yang D P, et al. Microbiological corrosion characteristics of 2507 duplex stainless steel in circulating cooling water [J]. Surf. Technol., 2015, 44(6): 70
[5] (孙福洋, 赵国仙, 杨东平等. 循环冷却水中2507双相不锈钢微生物腐蚀研究 [J]. 表面技术, 2015, 44(6): 70)
[6] Li F X, Wang Z K, Liu H L, et al. Corrosion and sterilization of pipelines by bacteria [J]. Oil-Gasfield Surf. Eng., 2014, 33(9): 22
[6] (李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验 [J]. 油气田地面工程, 2014, 33(9): 22)
[7] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[7] (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409)
[8] Zhou P, Qin S, Ye Q, et al. Monitoring and controlling growth of biofilm on carbon steel surface in oilfield sewage [J]. Mater. Prot., 2013, 46(11): 20
[8] (周平, 秦双, 叶琴等. 油田污水中碳钢表面生物膜的生长监测与控制 [J]. 材料保护, 2013, 46(11): 20)
[9] Ji F, Chen B L, Liang Y. Roles of D-amino acids on the physiological structure and regulatory function of bacteria [J]. Acta Microbiol. Sin., 2018, 58: 2078
[9] (纪芳, 陈博磊, 梁勇. D-氨基酸在细菌生理中的结构性能和调节功能的研究进展 [J]. 微生物学报, 2018, 58: 2078)
[10] Xing S F. Regulation mechanism research for the effect of D-amino acids on biofilm formation processes [D]. Ji'nan: Shandong University, 2014
[10] (邢苏芳. D-氨基酸对生物膜形成过程的调控机理研究 [D]. 济南: 山东大学, 2014)
[11] Cava F, Lam H, de Pedro M A, et al. Emerging knowledge of regulatory roles of D-amino acids in bacteria [J]. Cell. Mol. Life Sci., 2011, 68: 817
[12] Xu D, Li Y, Gu T. D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting [J]. Mater. Corros., 2014, 65: 837
[13] Li E E. Effects of D-amino acids and AI-2 on biofilm and corrosion behavior of marine microorganisms [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2018
[13] (李娥娥. D-氨基酸和AI-2对海洋环境微生物生物膜与腐蚀行为的影响 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2018)
[14] Zhang X. Study on the mechanism of inhibition and decomposition of biofilms in water system by D-amino acids [D]. Xi’an: Xi’an Shiyou University, 2018
[14] (张璇. D-氨基酸对水系统中生物膜的抑制与分解机理研究 [D]. 西安: 西安石油大学, 2018)
[15] Li X X, Wang H B, Hu X X, et al. Characteristics of corrosion sales and biofilm in aged pipe distribution systems with switching water source [J]. Eng. Fail. Anal., 2016, 60: 166
[16] Mahdi E, Rauf A, Eltai E O. Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content [J]. Corros. Sci., 2014, 83: 48
[17] Cui Z Y, Wang L W, Liu Z Y, et al. Influence of alternating voltages on passivation and corrosion properties of X80 pipeline steel in high pH 0.5 mol·L-1 NaHCO3+0.25 mol·L-1 Na2CO3 solution [J]. Corros. Eng. Sci. Technol., 2015, 50: 248
[1] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[4] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[5] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[6] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[7] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[8] XIAO Weilong, CHAI Ke, YANG Yuhui, WU Jinyi. EFFECT OF MICROBE ON THE CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 25 CARBON STEEL IN TROPICAL SEAWATER CONDITION[J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363.
[9] LI Songmei WANG Yanqing LIU Jianhua LIANG Xin. SYNERGISM EFFECT OF THIOBACILLUS FERROOXIDANS AND THIOBACILLUS THIOOXIDAN ON THE CORROSION BEHAVIOR OF STEEL Q235[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[10] LIU Hongfang HUANG Ling LIU Tao HU Yulong. APPLICATION AND PROGRESS IN BACTERICIDE OF SULFATE REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2009, 29(2): 154-160.
[11] DU Yili LI Jin GE Xiaopeng YUAN Weishuang. AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 321-324.
[12] ;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302 .
[13] . CORROSION BEHAVIOR OF 304 STAINLESS STEEL IN CULTURED MICROBIAL MEDIUM[J]. 中国腐蚀与防护学报, 2008, 28(1): 34-37 .
[14] Shichao Zhang; Zhiming Bai; Zhilong Wu. SYNTHESIS AND PROPERTIES OF CORROSION INHIBITOR AND BACTERICIDE 1-ACYLAMINO-1-ALKYL PHOSPHONIC ACID ON OIL-FIELD FLOODING[J]. 中国腐蚀与防护学报, 2003, 23(4): 231-233 .
[15] Zehua Dong; Xingpeng Guo; Hongfang Liu. STUDY ON ELECTROCHEMISTRY CHARACTERISTICSIN MIC BY WIRE BEAM ELECTRODES[J]. 中国腐蚀与防护学报, 2002, 22(1): 48-53 .
No Suggested Reading articles found!