|
|
Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments |
LI Lin1,2(), CHEN Yiqing1,2, GAO Peng1,2, AI Fangfang1,2, ZHONG Bin1,2, SAN Hongyu1,2, YANG Ying2 |
1 State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China 2 Iron & Steel Research Institute of ANGANG Group, Anshan 114009, China |
|
|
Abstract The corrosion behavior of bridge steels Q345qENH and Q420qENH in deicing salt was studied by means of wet-dry cyclic corrosion test, immersion corrosion test and rust scale characterization, while taking Q345qE steel as comparison. The results indicate that the corrosion resistance of the Q345qENH and Q420qENH weathering bridge steels was better than that of the Q345qE steel. The dry-wet cyclic corrosion test results reveal that the Q345qENH, Q420qENH and Q345qE steels show corrosion rates of 26.88, 27.5, and 33.75 times higher than those measured in immersion corrosion test, respectively. During dry-wet cyclic corrosion test, the structure and composition of the formed rust scales changed and the amount of α-FeOOH phase increased gradually with time, which may be an important reason leading to the decrease of corrosion rate at the end of dry-wet cyclic test.
|
Received: 31 December 2019
|
|
Fund: National Key R&D Program of China(2017YFB0304800) |
Corresponding Authors:
LI Lin
E-mail: ansteellilin@163.com
|
[1] |
Zhang Z M, Du S J, Zhao S T. A research on influence and countermeasure of the snow-melting agent to traffic facilities and environment [J]. Shanxi Arch., 2010, 36(23): 345
|
|
(张志敏, 杜素军, 赵世涛. 融雪剂对交通设施和环境的影响及对策研究 [J]. 山西建筑, 2010, 36(23): 345)
|
[2] |
Hong N F. Snow thaw agent and its corrosion harmfulness on infrastructure [J]. Arch. Technol., 2004, 35: 256
|
|
(洪乃丰. 融雪剂及其对基础设施的腐蚀危害 [J]. 建筑技术, 2004, 35: 256)
|
[3] |
Miyamoto A. Kawamura K. Nakamura H. Bridge management system and maintenance optimization for existing bridges [J]. Com. Civil Infrast. Eng., 2000, 15: 45
|
[4] |
Yang Z B. On deicing salt damage and the impact on the bridge [J]. China Build. Mater. Sci. Technol., 2014, 23(3): 122
|
|
(杨哲斌. 融雪剂对桥梁的破坏和影响 [J]. 中国建材科技, 2014, 23(3): 122)
|
[5] |
Chen Z W, Zhang L T, He E L, et al. Corrosion detection of road deicing salt on carbon steel and corrosion reducing treatments [J]. Highway, 2011, (12): 177
|
|
(陈宗伟, 张立塔, 赫恩龙等. 公路融雪剂碳钢腐蚀性检测方法及缓蚀工艺研究 [J]. 公路, 2011, (12): 177)
|
[6] |
Shi J, Yang F G, Zhou N C. Damage reasons and treatment measures of expressway bridge deck pavement in chilly area [J]. Liaoning Comm. Sci. Technol., 2004, (2): 20
|
|
(石坚, 杨芳国, 周乃承. 寒冷地区高速公路桥面铺装过早破损原因分析和处理方法 [J]. 辽宁交通科技, 2004, (2): 20)
|
[7] |
Liu S W, Liu P C. Mechanism analysis and prevention measures of the corrosion of bridge components by chlorine salt snow melt agent [J]. Highways Trans. Inner Mong., 2012, 3(6): 16
|
|
(刘少伟, 刘鹏冲. 氯盐融雪剂腐蚀桥梁构件的机理分析及防治对策 [J]. 内蒙古公路与运输, 2012, 3(6): 16)
|
[8] |
Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Sci. Corros. Prot., 2019, 39: 319
|
|
(郭铁明, 张延文, 秦均山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319)
|
[9] |
Zhao G N, Wu D D. A study on the hazard and control of deicing salt [J]. Environ. Sci. Manag., 2010, 35(4): 56
|
|
(赵光楠, 吴德东. 融雪剂的危害与防治研究 [J]. 环境科学与管理, 2010, 35(4): 56)
|
[10] |
Yao Y, Yao L. Research progress in impact of chlorine snowmelt agent (salt) on transport infrastructure [J]. Contemp. Chem. Ind., 2015, 44: 1359
|
|
(姚艺, 姚乐. 含氯融雪剂 (盐) 对交通基础设施的影响研究进展 [J]. 当代化工, 2015, 44: 1359)
|
[11] |
Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
|
[12] |
Liang J M, Tang D, Wu H B, et al. Cyclic corrosion behavior of E36 low-alloy steel in a simulated cargo oil tank upper deck environment corresponding to IMO standard [J]. Chin. J. Mater. Res., 2014, 28: 433
|
|
(梁金明, 唐荻, 武会宾等. 基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理 [J]. 材料研究学报, 2014, 28: 433)
|
[13] |
Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
|
[14] |
Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
|
[15] |
Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
|
|
(柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
|
[16] |
Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
|
|
(汪川, 曹公旺, 潘辰等. 碳钢, 耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39)
|
[17] |
Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
|
[18] |
Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America [J]. ISIJ Int., 1998, 38: 285
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|