Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (6): 501-506    DOI:
Current Issue | Archive | Adv Search |
Comparison of Corrosion Protection Measures of Grounding Grids for Electric Power Station
LIN Yonghua1, ZHANG Xuefeng2, HAN Li3, ZHANG Lanhe2
1. Harbin Electric Power Vocational Technology College, Harbin 150030, China;
2. School of Chemical Engineering, Northeast Dianli University, Jilin 132012, China;
3. Ningxia Electric Power Research Institute, Yinchuan 750011, China
Download:  PDF(2304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to prolong the service life of grounding grid for electric power station, the corrosion rate of grid without and with protection measures was evaluated by weight-loss method and electrochemical method respectively. The advantages and disadvantages of corrosion inhibitor, sacrificial anode cathodic protection and combined measure of corrosion inhibitor and sacrificial anode cathodic protection are compared and analyzed. The results show that three inhibitors of 1% of Na2MoO4, 2% of (NaPO3)6 and 4% of Na2SiO3 all show good efficiency in corrosion inhibition on Q235 steel grounding grid. The corrosion rate of grounding grid nearly decreased to 0.1200 mm/a with an inhibition efficiency about 70%. When (NaPO3)6+Na2MoO4 is used as mixed inhibitor, the corrosion rate of Q235 steel decreased from 0.4667 to 0.0873 mm/a with an inhibition efficiency up to 81.3%. Furthermore, by using magnesium sacrificial anode for cathodic protection, the corrosion rate of Q235 steel decreased from 0.2671 to 0.0639 mm/a with an inhibition efficiency up to 76.1%. By using combined protection measure of corrosion inhibitor plus sacrificial anode,the corrosion rate of Q235 steel decreased from 0.3342 to 0.0260 mm/a and inhibition efficiency is up to 92.2%.
Key words:  grounding grid      corrosion inhibitor      cathodic protection     
Received:  17 April 2013     
ZTFLH:  TG174  

Cite this article: 

LIN Yonghua,ZHANG Xuefeng,HAN Li,ZHANG Lanhe. Comparison of Corrosion Protection Measures of Grounding Grids for Electric Power Station. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 501-506.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I6/501

[1] Nahman J M, Jordjevic V B D. Nonuniformity correction factors for maximum Mesh and step-voltages of ground grids and combined ground electrodes [J]. IEEE Trans. Power Delivery, 1995, 10(3): 1263-1269
[2] Sverak J G. Safe substation grounding-PartII [J]. IEEE Trans. Power Appar. Syst., 1982, l0(10): 4006-4023
[3] Zhang Q J, Yao W H, He B L, et al. Corrosion behavior of TiO2 film prepared by anodie oxidation method in simulated deep sea hydrothermal region [J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 23-28
(张勤杰, 姚文红, 贺本林等. 阳极氧化法制备TiO2膜在模拟深海热液区的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2013, 33(1): 23-28)
[4] Rousseau C, Baraud F, Leleyter L, et al. Cathodic protection by zinc sacrificial anodes: Impact on marine sediment metallic contamination [J]. J. Hazard. Mater., 2009, 167: 953-958
[5] El-Sayed A R, Abdel-Samad A, El-Naqier R. On the cathodic protection of thermally insulated pipelines [J]. Eng. Fail. Anal., 2009, 16: 2047-2053
[6] Jiang K K, Du Y X, Lu M X, et al. Selection of boundary conditions of anodes in numerical simulation of cathodic protection system [J]. Corros. Sci. Prot. Technol., 2013, 25(4): 287-292
(蒋卡克, 杜艳霞, 路民旭等. 阴极保护数值模拟计算中阳极边界条件选取研究 [J]. 腐蚀科学与防护技术, 2013, 25(4): 287-292)
[7] Yin P F, Zhang W, Xu Z K, et al. Impressed current cathodic protection technology of jacket platform [J]. Corros. Prot., 2012, 33(2): 18-22
(尹鹏飞, 张伟, 许征凯等. 导管架平台外加电流阴极保护技术 [J]. 腐蚀与防护, 2012, 33(2): 18-22)
[8] Wu X M, Shao X L, Xue C, et al. Effects of pH on corrosion behavior of carbon steel in oilfield water with high sulphide [J]. J. Chin. Soc. Corros. Prot., 2013, 33(2): 159-163
(吴新民, 邵秀丽, 薛晨等. pH值对碳钢在高含硫油田水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33(2): 159-163)
[9] Zhao L, Teng H K, Yang Y S. Corrosion inhibition approach of air production systems in offshore oilfields [J]. Mater. Corros., 2004, 55(9): 684-688
[10] Chouparova E, Lanzirotti A, Marinkovic N. Characterization of petroleum deposits formed in a producing well by synchrotron radiation-based microanalyses [J]. Energy Fuels, 2004, 18(4): 1199-1212
[11] Chen Z, Yu Q, Liao D H, et al. Surface activity of HR-2 stainless steel in acid solution with SECM [J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 54-60
(陈阵, 余强, 廖登辉等. 酸性介质中HR-2不锈钢表面活性的SECM 三维图像表征研究 [J]. 中国腐蚀与防护学报, 2013, 33(1): 54-60)
[12] Wu F F, Tian H, Wang J Q. Determination of cathodic protection parameters of grounding grid [J]. Corros. Prot., 2009, 30(7): 491-494
(吴芳芳, 田浩, 王吉庆. 接地网阴极保护中最佳保护电位的研究 [J]. 腐蚀与防护, 2009, 30(7): 491-494)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[10] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[12] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[15] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
No Suggested Reading articles found!