Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (2): 157-162    DOI:
Current Issue | Archive | Adv Search |
CORRELATION BETWEEN MOLECULAR STRUCTURES OF INHIBITORS AND THEIR PERFORMANCE IN HIGH TEMPERATURE AND HIGH PRESSURE H2S/CO2 ENVIRONMENTS
DONG Meng, LIU Liewei, LIU Yuexue, ZHANG Datong
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074
Download:  PDF(1262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The inhibitive performance for N80 carbon steel of four corrosion inhibitors were investigated at high temperature and high pressure (HTHP) H2S/CO2 containing environment by masss loss method. The relationship between the molecular structures of inhibitors and inhibition efficiency was further illustrated by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the order of inhibition efficiency was as followed: quioline quaternary ammonium salt (QQA) > pyridine quaternary ammonium salt > mannich bases > imidazoline quaternary ammonium salt. QQA had better sulfide-corrosion resistance compared with the other three and exhibited an excellent adsorption on the surface of N80 steel, which could be attributed to that the homogeneous adsorbed film of QQA molecules was stable enough in HTHP H2S/CO2 containing solution. The inhibition efficiency of QQA could reach 97% at the concentration of 0.15 mass%.
Key words:  high temperature and high pressure      H2S/CO2       molecular structure      carbon steel      inhibitor     
Received:  29 November 2010     
ZTFLH: 

TG174.42

 
Corresponding Authors:  LIU Liewei     E-mail:  liuliewei@126.com

Cite this article: 

DONG Meng, LIU Liewei, LIU Yuexue, ZHANG Datong. CORRELATION BETWEEN MOLECULAR STRUCTURES OF INHIBITORS AND THEIR PERFORMANCE IN HIGH TEMPERATURE AND HIGH PRESSURE H2S/CO2 ENVIRONMENTS. J Chin Soc Corr Pro, 2012, 32(2): 157-162.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I2/157

[1] Dai J X, Hu J Y, Jia C Z, et al. Suggestions for scientifically and safely exploring and developing high H2S gas fields[J]. Pet. Explor. Dev., 2004, 31(2): 1-4

    (戴金星,胡见义, 贾承造等. 科学安全勘探开发高硫化氢天然气田的建议[J].石油勘探与开发, 2004, 31(2): 1-4)

[2] Fierro G, Ingo G M, Manicia F. XPS investigation on AISI 420 stainless steel corrosion in oil and gas well environment [J].Mater. Sci., 1990, 25(2B): 1407-1415

[3] Fierro G, Ingo G M, Manicia F. XPS investigation on the corrosion behavior of 13Cr martensitic stainless steel in CO2-H2S-Cl- environments[J]. Corrosion, 1989, 45(10):814-823

[4] Bolmer P W. Polarization of iron in H2S-NaHS buffers[J]. Corrosion, 1965, 21(3): 69-75

[5] Bai Z Q, Li H L, Liu D X, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment[J]. Mater. Prot.,2003, 36(4): 32-34

    (白真权, 李鹤林, 刘道新等.模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究[J].材料保护, 2003, 36(4): 32-34)

[6] Su Y H. The study on nickel base G-3 alloy oil pipe used in severe sour gas field[D]. Kunming: Kunming University of Science and Technology, 2008

    (苏玉华.高酸性气田用镍基耐蚀合金G-3油管的研究[D].昆明:昆明理工大学, 2008)

[7] Zhang Q S, Wu X D, Wei F L, et al. The optimum selection on gas producing pipe string in Puguang gas field with high sulfur content[J]. Nat. Gas Ind., 2009, 29(3): 91-93

    (张庆生,吴晓东, 魏风玲等. 普光高含硫气田采气管柱的优选[J]. 天然气工业, 2009,29(3): 91-93)

[8] Yang Y F. Study on corrosion inhibitor for high-temperature acidification[D]. Dongying: China University of Petroleum, 2007

    (杨永飞. 高温酸化缓蚀剂研究[D]. 东营:中国石油大学, 2007)

[9] Qiu H Y, Li J B. The present situation and expectation of acidizing corrosion inhibitors[J]. Corros. Sci. Prot. Technol.,2005, 17(4): 255-258

    (邱海燕, 李建波.酸化缓蚀剂的发展现状及展望[J]. 腐蚀科学与防护技术, 2005, 17(4):255-258)

[10] Jasinski R J, Frenier W, Frenier W. Process and composition for protecting chrome steel[P]. United States, 5120471,1992

[11] Hoffmeister H. Modeling the effect of chloride content on H2S corrosion by coupling of phase and polarization behavior [A]. Corrosion/2007[C]. Houston: 2007, 1-25

[12] Vitale D D. Effect of hydrogen sulfide partial pressure, pH and chloride content on the SSC resistance of martensitic stainless steels and martensitic precipitation hardening stainless steels [A]. Corrosion /1999[C]. Houston, 1999, 584-594

[13] Palacios C A, Shadley J R. Characteristics of corrosion scales on steels in CO2-sturated NaCl brine [J]. Corrosion,1991, 47(2): 122-127

[14] Sarma D D, Rao C N R. XPES studies of oxides of second-and third-row transition metals including rare earths[J]. J.Electron Spectrosc. Relat. Phenom., 1980, 20(1): 25-45

[15] Srivastava S, Badrinarayanan S, Mukhedkar A J. X-ray photoelectron spectra of metal complexes of substituted 2,4-pentanediones[J]. Polyhedron, 1985, 4(3): 409-414

[16] Marcus P, Bussell M E. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels[J]. Appl.Surf. Sci., 1992, 59(1): 7-21

[17] Chen L Z, Gao Y M, Miu W H. The inhibition mechanism of organic on metal surface[J]. Total Corros., 2005, 19(2): 25-28

     (陈立庄, 高延敏, 缪文桦. 有机缓蚀剂与金属作用的机理[J].全面腐蚀控制, 2005, 19(2): 25-28)

[18] Ren Z Q, Liu D X, Bai Z Q, et al. Research on the inhibition behavior of imidazoline derivant in the oil/gas well containing H2S/CO2[J]. Nat. Gas Ind., 2004, 24(8): 53-55

     (任志强, 刘道新, 白真权等.咪唑啉衍生物在含H2S/CO2油气环境中的缓蚀行为研究[J].天然气工业, 2004, 24(8): 53-55)

[19] Ren Z Q. The mechanisms of inhibition and corrosion behavior on the N80 steel in the simulating gas field downhole CO2 and H2S/CO2 corrosion environment under high temperature and high pressure conditions[D]. Xi'an:Northwestern Polytechnical University, 2003

     (任志强.N80油管钢在含CO2/H2S高温高压两项介质中的电化学行为及缓蚀机理的研究[D].西安: 西北工业大学, 2003)

[20] Zhang J, Du M, Yu H H, et al. Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films forms formed on Q235 steel[J]. Acta Phys. Chim. Sinica, 2009,25(3): 525-531

     (张静, 杜敏, 于会华等.分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响[J].物理化学学报, 2009, 25(3): 525-531)

[21] Wang J, Zhang W. Inhibitory behavior and corrosioninhibition mechanism of mannich base[J]. Spec. Petrochem., 2001,(4): 19-22

     (王江, 张卫. 曼尼希碱的缓蚀行为和缓蚀机理[J].精细化工, 2001, (4): 19-22)

[22] Wang H L. The study on inhibitor Mannich base and its inhibitory behavior[D]. Dalian: Dalian University of Technology,1999

     (王慧龙. Mannich碱缓蚀剂及其缓蚀行为的研究[D]. 大连:大连理工大学, 1999)

[23] Jin C L. Picking inhibitor IS-129 IS-156[J]. Appl. Chem.Ind., 1982, 4: 1-9

     (金聪玲. 酸洗缓蚀剂IS-129 IS-156[J].应用化工, 1982, (4): 1-9)

[24] Tian Y Q. Investigation on inhibition properties of pydine and its derivatives[D]. Dongying: China University of Petroleum, 2009

     (田永芹.缓蚀剂吡啶及其衍生物缓蚀性能的研究[D]. 东营: 中国石油大学, 2009)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[10] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[12] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
No Suggested Reading articles found!