Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (5): 341-346    DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF ALTERNATING CURRENT MODULATED PASSIVATION ON THE CORROSION RESISTANCE OF STANNATE CONVERSION COATING ON AZ91D ALLOY
LIU Xiaolan1, CHEN Jie1, CAO Jingtao1,CUI Zhongyu1, ZHANG Tao1,SHAO Yawei1, MENG Guozhe1, WANG Fuhui1,2
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1407KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By using alternating current (AC) modulated passivation technique, the formation process of stannate conversion coating could be controlled. The microstructure morphology of the conversion coating was observed by scanning electron microscopy. Polarization curves and electrochemical impedance spectra (EIS) were examined to understand the effect of the AC passivation on the corrosion resistance of the conversion coating. The experimental results revealed that the surface of AZ91D magnesium alloy after the AC passivation was covered by the hemispherical particles whth larger size than that for traditional immersion conversion coating (imm-CC). The corrosion resistance of the conversion coating was significantly improved as a result of the AC passivation.
Key words:  magnesium alloy      electrochemical impedance spectroscopy      alternating current modulated passivation      conversion coating      corrosion resistance     
Received:  14 April 2009     
ZTFLH: 

TG174.36

 
Corresponding Authors:  ZHANG Tao     E-mail:  zhangtao@hrbeu.edu.cn

Cite this article: 

LIU Xiaolan, CHEN Jie, CAO Jingtao,CUI Zhongyu, ZHANG Tao,SHAO Yawei, MENG Guozhe, WANG Fuhui. EFFECT OF ALTERNATING CURRENT MODULATED PASSIVATION ON THE CORROSION RESISTANCE OF STANNATE CONVERSION COATING ON AZ91D ALLOY. J Chin Soc Corr Pro, 2010, 30(5): 341-346.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I5/341

[1] Zucchi F, Frignani A, Grassi V, et al. Stannate and permanganate conversion coatings on AZ31 magnesium alloy [J]. Corros. Sci., 2007,49(12): 4542-4552 [2] Zhao M, Wu S, Luo J, et al. A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution [J]. Surf. Coat. Technol., 2006, 200(18-19): 5407-5412 [3] Zhao M, Wu S, An P, et al. Growth of multi-elements complex coating on AZ91D magnesium alloy through conversion treatment [J]. J. Alloy.Compd., 2007, 427(1-2): 310-315 [4] Dabala M, Brunelli K,Napolitani E, et al. Cerium-based chemical conversion coating on AZ63 magnesium alloy [J]. Surf. Coat. Technol., 2003, 172(2-3): 227-232 [5] Niu L, Jiang Z, Li G, et al. A study and application of zinc phosphate coating on AZ91D magnesium alloy [J]. Surf. Coat.Technol., 2006, 200(9): 3021-3026 [6] Chong K, Shih T. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution [J]. Mater. Chem. Phys., 2003,80(1): 191-200 [7] Ardelean H, Frateur I, Marcus P. Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings [J]. Corros. Sci., 2008, 50(7): 1907-1918 [8] Yang K, Ger M, Hwu W, et al. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy [J].Mater. Chem. Phys., 2007, 101(2-3): 480-485 [9] Rudd A, Breslin C, Mansfeld F.The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corros. Sci., 2000, 42(2): 275-288 [10] Elsentriecy H, Azumi K, Konno H. Improvement in stannate chemical conversion coatings on AZ91D magnesium alloy using the potentiostatic technique [J]. Electrochim. Acta., 2007, 53(2): 1006-1012 [11] Elsentriecy H, Azumi K, Konno H. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91D magnesium alloy [J]. Electrochim. Acta., 2008, 53(12): 4267-4275 [12] Mansfeld F, Lin S, Kwiatkowski L. The effects of process parameters on alternating voltage (AV) passivation of 304 stainless steel [J]. Corros. Sci., 1993, 34(12): 2045-2058 [13] Mansfeld F, Lin S, Kwiatkowski L. Optimization of the alternating voltage passivation process for stainless steel [J].Corros. Sci., 1994, 50(11): 838-847 [14] Song G, Cao C, Lin H. Effects of AC-modulated passivation and post-treatment on composition and stability of passive films [J]. Corros. Sci., 1993, 49(4): 271-277 [15] He H, Zhang T, Zhao C, et al. Effect of alternating voltage passivation on the corrosion resistance of duplex stainless steel [J]. J. Appl. Electrochem., 2009, 39(5): 737-745
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
No Suggested Reading articles found!