Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (2): 124-128    DOI:
Current Issue | Archive | Adv Search |
A RESEARCH ON pH DURING THE PROCESSION OF THE CERIUM(III) FILM FORMATION OF ALUMINUM ALLOYS BY EIS
GU Baoshan1; LIU Jianhua2
1. National Engineering Laboratory for Advanced Coatings Technology of Metal Material;  China Iron & Steel Research Institute Group; Beijing 100081
2. School of Materials Science and Engineering; Beihang University; Beijing 100083
Download:  PDF(767KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical impedance spectroscope (EIS) of B95 aluminum alloy in 0.01 mol/L CeCl3 solution was investigated to study the film formation. The changes of EIS in the film formation help to study the influence of pH on the film formation of B95 aluminum alloys. Followed is an analysis on the tested EIS based on equivalent circuit. The result shows that Ce conversion coating can not be formed when B95 aluminum alloy is in 0.01 mol/L CeCl3 solution at the pH=3.0 Increaing the [H+] of solution will do good to the dissolution and activation of aluminum alloy, and accelerate the first stage, but to disadvantage the formation of Ce(III) hydrate and oxide. As the pH increases, the rate of aluminum alloy dissolution and activation will decrease. Such decrease will affect  the film formation stage. But it is good for the aggradation of the Ce(III) hydrate and oxide, and  the thickness and the compactness of the film. In neutral or subacidity solution, increasing the pH of solution will do good to the final formation of Ce(III) conversion coating.

Key words:  aluminium alloys      electrochemical impedance spectroscope(EIS)      cerium conversion coating      pH     
Received:  03 November 2009     
ZTFLH: 

TG174

 
Corresponding Authors:  GU Baoshan     E-mail:  gubs@263.net

Cite this article: 

GU Baoshan; LIU Jianhua. A RESEARCH ON pH DURING THE PROCESSION OF THE CERIUM(III) FILM FORMATION OF ALUMINUM ALLOYS BY EIS. J Chin Soc Corr Pro, 2010, 30(2): 124-128.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I2/124

[1] Hinton B R W. The inhibition of aluminum corrosion by cerium cations [J]. Met. Forum, 1984, 7(4): 211-217
[2] Hinton B R W. The inhibition of aluminum alloy corrosion by rare earth metal cations [J]. Corros. Aust., 1985, 210(3): 12-17
[3] Buldwin K R, Lane P L, Hewins M A H, et al. Metallic cations as corrosion inhibitors for aluminum-copper alloys [A]. UK Ministry of Defence, Royal Aircraft Establishment Technical Report 87052 [C]. 1987
[4] Mansfeld F, Lin S, Kim S, et al. Surface modification of Al alloys and Al-based metal-matrix composites by chemical passivation [J]. Electrochem. Acta, 1989, 34(8): 1123-1132
[5] Arnott D R. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy [J]. Appl. Surf.Sci., 1985, 22/23: 236-251
[6] Hiton B R W. Corrosion inhibition with rare earth metal salts [J]. J. Alloy Compd., 1992, 180: 15-19
[7] Hinton B R W , Arnott D R , Ryan N E. Cerium conversion coating for the corrosion protection of aluminum [J]. Met. Forum, 1986, 9(3): 162-173
[8] Gu B S, Liu J H, Ji X C. Corrosion inhibition mechanism of cerium(III) for aluminum alloy [J], J. Chin. Soc. Corros.Prot., 2006, 26(1): 53-58
    (顾宝珊, 刘建华, 纪晓春. 铈盐对铝合金的缓蚀机理研究 [J]. 中国腐蚀与防护学报,2006, 26(1):53-58)
[9] Gu B S,Liu J H. Corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique [J]. J. Rare Earths, 2006,24(1):89-96
[10] Wang X D, Wu S M, Liu Y F, et al.  An AC impedance characteristics of the cerium oxide film formed on the aluminum surface [J]. J. Univ. Sci. Technol. Beijing, 2001, 23(4): 320-323
     (王新东,吴世民,刘艳芳等. 用电化学阻抗法研究铝合金表面稀土转化膜 [J]. 北京科技大学学报,2001, 23(4): 320-323)
[11] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press,2002:81-82
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社,2002:81-82)
[12] Gu B S, Liu J H. Cerium(III) film formation process for aluminum alloys observed with electrochemical impedance spectroscopy [J]. J. Chin. Rare Earth Soc., 2007, 25(2): 210-217
     (顾宝珊, 刘建华. 铈盐对铝合金的成膜过程电化学交流阻抗研究 [J]. 中国稀土学报,2007,25(2):210-217)
[13] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press,2002:92-95
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京:科学出版社,2002:92-95)

[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[4] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[5] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[9] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[10] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[11] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[14] XIE Xuan, LIU Li, WANG Fuhui. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[15] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
No Suggested Reading articles found!