Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (2): 102-106    DOI:
Current Issue | Archive | Adv Search |
A STUDY OF PASSIVE FILM ON REBAR SURFACE BY ATOMIC FORCE MICROSCOPE
WANG Ying SHI Yuan-xiang WEI Bao-ming (Nanjing University of Chemical Technology; Department of Applied Chemistry; Nanjing 210009)LIN Chang-jian (Xiamen University; Department of Chemistry; Xiamen 361005)
Download:  PDF(1743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Atomic force microscope(AFM) was used to study passive film on the rebar surface in a simulated concrete pore solution. AFM is a powerful tool for studying the microstructure and surface topography of passive film. The results revealed that no matter whether Cl- was present or not, there was always defects in the passive film on rebar. They might lie at the dislocations and dissoluble impurites.The maximum size of the defects was up to 10μm. The results also showed that these defects could be improved or even eliminated by adding composite inhibitors so that the resistance of pitting corrosion would be enhanced.
Key words:  Atomic force microscope(AFM)      Rebar      Passive film      Pitting      Composite inhibitor     
Received:  25 April 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

WANG Ying SHI Yuan-xiang WEI Bao-ming (Nanjing University of Chemical Technology; Department of Applied Chemistry; Nanjing 210009)LIN Chang-jian (Xiamen University; Department of Chemistry; Xiamen 361005). A STUDY OF PASSIVE FILM ON REBAR SURFACE BY ATOMIC FORCE MICROSCOPE. J Chin Soc Corr Pro, 1998, 18(2): 102-106.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I2/102

1 洪乃丰.混凝土与水泥制品,1990,5:10
2 Binnig G,Quate C F.Phys.Rev.lett,1986,56:930
3 Wheat H B,Eliczer Z. Corrosion(NACE).,1985,41(11):640
4 陆加和,陈长彦.现代分析技术,清华大学出版社,1995
5 王更新.材料工程.1993,10:38
6 汪鹰.南京化工大学硕士华北论文,1997
7 龙荷云.循环冷却水处理,江苏科学技术出版社,1990
8 Xu Yuan,Wiang Minghua,Pickering H W.J.Rlectrochem.Soc.,1993,140(12):3448
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
No Suggested Reading articles found!