Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 975-982    DOI: 10.11902/1005.4537.2024.326
Current Issue | Archive | Adv Search |
Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study
XIA Yuan1, LIAN Bingjie1, CHENG Jia2, LI Wen2()
1 CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou 213016, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

XIA Yuan, LIAN Bingjie, CHENG Jia, LI Wen. Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 975-982.

Download:  HTML  PDF(5080KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the influence of cyclic planar molecular structure and linear molecular structure of polyaspartic ester polyurea amino component on the microstructure of polyurea coatings and the diffusion behavior of corrosive media within the coating was studied by means of molecular dynamics simulation. The results indicate that compared with linear molecular structures, cyclic planar molecular structures have greater steric hindrance, resulting larger free volume and lower density of the polyurea system; The increase in molecular branching can further increase the free volume of the coating, leading to a decrease in the density of the system; The increase in molecular chain segment length has a relatively small impact on the compactness of the system; Water molecules can form hydrogen bonds with polyurea molecules and tend to exist in an aggregated state inside the coating. Regarding the corrosion resistance of the formed coating, linear molecular structures are more conducive to formation of dense coating structures and enhancement of coating corrosion resistance. Finally, this article conducts a study on the correlation mechanism between coating structure and performance through molecular simulation methods, providing a new means of molecular simulation screening for coating formulation design.

Key words:  polyaspartic ester polyurea      molecular structure      corrosive media      molecular dynamics simulation     
Received:  09 October 2024      32134.14.1005.4537.2024.326
ZTFLH:  TE58  
Fund: Youth Innovation Plan of Shandong Province(2023KJ033);Key Technology Research Project of Qingdao Marine Industry(24-1-3-hygg-16-hy)
Corresponding Authors:  LI Wen, E-mail: liwen3710@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.326     OR     https://www.jcscp.org/EN/Y2025/V45/I4/975

Fig.1  Synthesis reactions of polyaspartic acid ester resin and polyaspartic acid ester polyurea from diethyl maleate and polyether amine, and the resin and diuret isocyanate, respectively (a), molecular structures of 3,3'- dimethyl-4,4-diaminocyclohexylmethane (b), 4,4 '- diaminodicyclohexylmethane (c) and 1,6-Hexanediamine (d)
Fig.2  Molecular models of A1 (a), A2 (b), A3 (c) and A4 (d) resins, molecular model of polyurea synthesized by the reaction between A1 resin and biuret isocyanate (e), and simulation model of polyurea coating system (f)
Fig.3  Time dependences of the densities of polyurea systems with different polymerization degrees: (a) 4DT, (b) 6DT, (c) 8DT
Fig.4  Free volume of A1 polyurea 6DT coating (in order to show the shape of the free volume more clearly, the resin molecules in the system are displayed as lines)
Fig.5  FFV data of 4DT (a), 6DT (b) and 8DT (c) A1-A4 resin systems, and their comparison chart (d)
Fig.6  MSD curves of water molecules in 6DT A1-A4 polyurea systems (a) and A4 polyurea systems with different molecular chain lengths (b)
Fig.7  Radial distribution function between the double bond oxygen atom in A4 polyurea molecular structure and the hydrogen atom in water molecule (a), and distribution of water molecules and their hydrogen bonding structures with polyurea molecules (b)
[1] Chen J N, Jiang Y S, Xiao F, et al. Research progress of anti-corrosion for polyurea coatings in marine environment [J]. Mater. Prot., 2022, 55: 129
(陈菊娜, 蒋以山, 肖 锋 等. 海洋环境中聚脲涂层防腐研究进展 [J]. 材料保护, 2022, 55: 129)
[2] Liu Z Y, Song W, Cheng Y C. Design and application of polyurea anti-corrosion coating for concrete surface of flue gas desulfurization devices [J]. Corros. Prot., 2010, 31: 380
(刘宗瑜, 宋 蔚, 程玉春. 烟气脱硫装置混凝土表面聚脲防腐蚀涂层设计与应用 [J]. 腐蚀与防护, 2010, 31: 380)
[3] Shojaei B, Najafi M, Yazdanbakhsh A, et al. A review on the applications of polyurea in the construction industry [J]. Polym. Advan. Technol., 2021, 32: 2797
[4] Shi F. Study on preparation of polyaspartic polyurea and its property of anti-cavitation [D]. Beijing: China Academy of Machinery Science & Technology, 2011
(史 锋. 聚天冬氨酸酯聚脲涂层的制备及抗空蚀性能的研究 [D]. 北京: 机械科学研究总院, 2011)
[5] Meng Q S, Wang P, Yu Y, et al. Polyaspartic polyurea/graphene nanocomposites for multifunctionality: self-healing, mechanical resilience, electrical and thermal conductivities, and resistance to corrosion and impact [J]. Thin Wall. Struct., 2023, 189: 110853
[6] Lian B J, Tu Q, Wang H H, et al. Development and application of solvent-free DTM polyaspartic ester based coatings [J]. Coat. Prot., 2022, 43: 1
(廉兵杰, 涂 强, 王焕焕 等. 无溶剂底面合一聚天冬氨酸酯聚脲涂料的研制及应用研究 [J]. 涂层与防护, 2022, 43: 1)
[7] Liu J R, Yu K J, Qian K, et al. Research progress of polyaspartate polyurea [J]. Paint Coat. Ind., 2022, 52: 77
(刘俊仁, 俞科静, 钱 坤 等. 聚天冬氨酸酯聚脲的研究进展 [J]. 涂料工业, 2022, 52: 77)
doi: 10.12020/j.issn.0253-4312.2022.6.77
[8] Natour S, Gajdošová V, Morávková Z, et al. Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties [J]. Prog. Org. Coat., 2024, 192: 108449
[9] Van Gunsteren W F, Dolenc J, Mark A E. Molecular simulation as an aid to experimentalists [J]. Curr. Opin. Struc. Biol., 2008, 18: 149
doi: 10.1016/j.sbi.2007.12.007 pmid: 18280138
[10] Sheng G W, Qi J, Lu P, et al. Molecular simulation on oxidation mechanism of FeCr alloy in high temperature steam environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 159
(绳淦文, 祁 晶, 卢 平 等. 高温蒸气环境中FeCr合金氧化机理的分子模拟研究 [J]. 中国腐蚀与防护学报, 2023, 43: 159)
doi: 10.11902/1005.4537.2022.074
[11] Lbadaoui-Darvas M, Garberoglio G, Karadima K S, et al. Molecular simulations of interfacial systems: challenges, applications and future perspectives [J]. Mol. Simulat., 2023, 49: 1229
doi: 10.1080/08927022.2021.1980215
[12] Düren T, Bae Y S, Snurr R Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J]. Chem. Soc. Rev., 2009, 38: 1237
doi: 10.1039/b803498m pmid: 19384435
[13] Chen Z, Yuwen P, Wen S H, et al. First principles study on effect of B addition on oxidation resistance of MoSi2 intermetallic compound [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 224
(陈 郑, 宇文佩, 温思涵 等. B添加对MoSi2金属间化合物抗氧化性能影响的第一性原理研究 [J]. 中国腐蚀与防护学报, 2025, 45: 224)
[14] Jian W, Lau D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level [J]. Compos. Sci. Technol., 2020, 191: 108076
[15] Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
(孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411)
doi: 10.11902/1005.4537.2020.227
[16] Mansourian-Tabaei M, Asiaee A, Hutton-Prager B, et al. Thermal barrier coatings for cellulosic substrates: a statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity [J]. Appl. Surf. Sci., 2022, 587: 152879
[17] Cheng X Y, Ye H, Guo C H, et al. Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323
(程学雨, 叶 桓, 郭程皓 等. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1323)
doi: 10.11902/1005.4537.2023.339
[18] Farzi N, Ebrahim M. Mechanical properties and glass transition temperature of metal-organic framework-filled epoxy resin: a molecular dynamics study [J]. Mater. Chem. Phys., 2024, 314: 128874
[19] Grujicic M, Pandurangan B, Bell W C, et al. Molecular-level simulations of shock generation and propagation in polyurea [J]. Mater. Sci. Eng., 2011, 528A: 3799
[20] Amani M, Amjad-Iranagh S, Golzar K, et al. Study of nanostructure characterizations and gas separation properties of poly (urethane-urea)s membranes by molecular dynamics simulation [J]. J. Membrane. Sci., 2014, 462: 28
[21] Liu M H, Oswald J. Coarse-grained molecular modeling of the microphase structure of polyurea elastomer [J]. Polymer, 2019, 176: 1
[22] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. J. Phys. Chem., 1998, 102B: 7338
[23] Nosé S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81: 511
[24] Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
[25] Wang B, Ren W W, Wang W F. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials [J]. Dev. Appl. Mater., 2016, 31: 1
(王 兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究 [J]. 材料开发与应用, 2016, 31: 1)
[26] Ernst D, Köhler J. Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves [J]. Phys. Chem. Chem. Phys., 2013, 15: 845
doi: 10.1039/c2cp43433d pmid: 23202416
[27] Zhang J, Li W, Yan Y G, et al. Molecular insight into nanoscale water films dewetting on modified silica surfaces [J]. Phys. Chem. Chem. Phys., 2015, 17: 451
doi: 10.1039/c4cp04554h pmid: 25408287
[28] Martı J. Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations [J]. J. Chem. Phys., 1999, 110: 6876
[29] Li W, Zhang L, Zhang M T, et al. Structures of graphene-reinforced epoxy coatings and the dynamic diffusion of guest water: a molecular dynamics study [J]. Ind. Eng. Chem. Res., 2020, 59: 20749
[1] DONG Nan, QIN Weirong, HAN Peide. Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[2] CHENG Xueyu, YE Huan, GUO Chenghao, LU Lixin, LI Weizhe. Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[3] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[7] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[8] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[9] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[10] WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[11] DONG Meng, LIU Liewei, LIU Yuexue, ZHANG Datong. CORRELATION BETWEEN MOLECULAR STRUCTURES OF INHIBITORS AND THEIR PERFORMANCE IN HIGH TEMPERATURE AND HIGH PRESSURE H2S/CO2 ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(2): 157-162.
[12] LIU Yuexue, LIU Liewei, DONG Meng, ZHANG Datong. RELATIONSHIP BETWEEN CHEMICAL MOLECULAR STRUCTURE AND ANTI-SULFUR PROPERTIES AND INHIBITION MECHANISM OF CORROSION INHIBITORS[J]. 中国腐蚀与防护学报, 2012, 32(2): 151-156.
[13] Huaiyu Yang; Jiajian Chen; Chunan Cao. STUDY ON CORROSION AND INHIBITION MECHANISM IN H2S AQUEOUS SOLUTIONSⅥ.The Relationship between Molecular Structure of ImidazolineDerivatives and Inhibition Performance in H2S Solutions[J]. 中国腐蚀与防护学报, 2002, 22(3): 148-152 .
No Suggested Reading articles found!