|
|
Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints |
HU Na1,2, PENG Wenshan2( ), GUO Weimin2, LIU Tiannan2, DUAN Tigang2, LIU Shaotong2 |
1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
|
Cite this article:
HU Na, PENG Wenshan, GUO Weimin, LIU Tiannan, DUAN Tigang, LIU Shaotong. Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 965-974.
|
Abstract The marine corrosive environment is complex, and the marine structure itself is also subjected to stress and other effects, which gradually highlights the corrosion and performance degradation problems of high-strength Al-alloy welded joints used in marine equipment. Herein, the corrosion behavior and performance degradation of welded joints of 7-series high-strength Al-alloy under different stresses, while immersion in Qingdao natural seawater at 5 ℃ for different times was studied via a lab simulation set, electrochemical measurement, universal test machine, SEM and XPS, in terms of the corrosion morphology, corrosion products, and degradation regularity of welded joints. The results show that as stress increases and immersion time prolongs, the corrosion tendency of high-strength Al-alloy welded joints increases, and their corrosion resistance gradually decreases; while the corrosion potential of the welded joint becomes more negative, the charge transfer resistance decreases, resulting in lower potential, higher corrosion sensitivity, and poorer corrosion resistance. When subjected to tensile stress exceeding 25%σs, as the pre stress increases, the proportion of oxygen in the corrosion products continues to increase, the corrosion product film is damaged, and the corrosion becomes more severe. With the increase of stress and immersion time, the elongation and cross-sectional shrinkage of the welded joint after fracture decrease, and thus the sensitivity to stress corrosion increases.
|
Received: 01 October 2024
32134.14.1005.4537.2024.321
|
|
Corresponding Authors:
PENG Wenshan, E-mail: pengwenshan1386@126.con
|
[1] |
Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
|
|
(柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175)
doi: 10.11902/1005.4537.2021.050
|
[2] |
Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
doi: S0166-445X(17)30182-0
pmid: 28763776
|
[3] |
Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
doi: 10.1111/cobi.12562
pmid: 26219342
|
[4] |
Wu F M, Wang J T, Zhang Y K, et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean [J]. Mech. Electr. Eng. Technol., 2021, 50: 30
|
|
(吴凤民, 王江涛, 张永康 等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究 [J]. 机电工程技术, 2021, 50: 30)
|
[5] |
Peng W S, Hou J, Yu H L, et al. Corrosion behaviors of aluminum alloys in different harbors [J]. Equip. Environ. Eng., 2019, 16: 8
|
|
(彭文山, 侯 健, 余化龙 等. 不同港口海域铝合金腐蚀行为研究 [J]. 装备环境工程, 2019, 16: 8)
|
[6] |
Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
|
|
(陈志坚, 周学杰, 陈 昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
|
[7] |
Li C, Luo X, Zhang W. Research progress on corrosion and protection of typical warship metal materials [J]. Equip. Environ. Eng., 2023, 20: 80
|
|
(李 川, 罗 茜, 张 薇. 典型舰船用金属材料腐蚀与防护研究进展 [J]. 装备环境工程, 2023, 20: 80)
|
[8] |
Hou Y, Tian Y, Zhao Z P, et al. Corrosion and protection of aluminum alloy for marine engineering [J]. Surf. Technol., 2022, 51: 1
|
|
(侯 悦, 田 原, 赵志鹏 等. 海洋工程用铝合金的腐蚀与防护研究进展 [J]. 表面技术, 2022, 51: 1)
|
[9] |
Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
|
|
(乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
|
[10] |
Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
|
|
(邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683)
doi: 10.11902/1005.4537.2023.140
|
[11] |
Peng W S, Duan T G, Ma L, et al. Corrosion behaviors of 5083 aluminum alloy in tropical marine environment [J]. Equip. Environ. Eng., 2023, 20: 77
|
|
(彭文山, 段体岗, 马 力 等. 热带海洋环境中5083铝合金腐蚀行为研究 [J]. 装备环境工程, 2023, 20: 77)
|
[12] |
Beura V K, Karanth Y, Darling K, et al. Role of gradient nanograined surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
|
[13] |
Gharbi O, Kairy S K, De Lima P R, et al. Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing [J]. npj Mater. Degrad., 2019, 3: 40
|
[14] |
Li S, Dong H G, Shi L, et al. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld [J]. Corros. Sci., 2017, 123: 243
|
[15] |
Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
|
[16] |
Sun X G, Xu X X, Wang Z H, et al. Study on corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint [J]. Anti-Corros. Meth. Mater., 2021, 68: 302
|
[17] |
Fleck P, Calleros D, Madsen M, et al. Retrogression and reaging of 7075 T6 aluminum alloy [J]. Mater. Sci. Forum, 2000, 331-337: 649
|
[18] |
Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of superplastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans., 1997, 28A: 2113
|
[19] |
Robinson J S, Cudd R L. Electrical conductivity variations in X2096, 8090, 7010 and an experimental aluminium lithium alloy [J]. Mater. Sci. Forum, 2000, 331-337: 971
|
[20] |
Cooper K R, Young L M, Gangloff R P, et al. The electrode potential dependence of environment-assisted cracking of AA 7050 [J]. Mater. Sci. Forum, 2000, 331-337: 1625
|
[21] |
Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
|
[22] |
Freixes M L, Zhou X Y, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale [J]. Nat. Commun., 2022, 13: 4290
doi: 10.1038/s41467-022-31964-3
pmid: 35879282
|
[23] |
Jones K, Hoeppner D W. Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading [J]. Corros. Sci., 2005, 47: 2185
|
[24] |
Turnbull A, Horner D A, Connolly B J. Challenges in modelling the evolution of stress corrosion cracks from pits [J]. Eng. Fract. Mech., 2009, 76: 633
|
[25] |
Dollah M. The study of stress corrosion cracking in aluminum alloy 7075 (W) under tensile loading by eddy current measurement [J]. Appl. Mech. Mater., 2011, 83: 216
|
[26] |
Tsai W T, Duh J B, Yeh J J, et al. Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5wt%NaCl solution [J]. Corrosion, 1990, 46: 444
|
[27] |
Hua T S, Song R G, Zong Y, et al. Corrosion behavior of 7050 aluminum alloy after micro-arc oxidation under constant load in NaCl solution with different pH values [J]. Surf. Technol., 2020, 49: 269
|
|
(花天顺, 宋仁国, 宗 玙 等. 恒载荷下的微弧氧化后7050铝合金在不同pH值NaCl溶液中的腐蚀行为 [J]. 表面技术, 2020, 49: 269)
|
[28] |
Meng X Q. Experimental study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials [D]. Shanghai: Shanghai Jiao Tong University, 2012
|
|
(孟祥琦. 铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究 [D]. 上海: 上海交通大学, 2012)
|
[29] |
He Z, Bai B, Zhang X M, et al. Stress corrosion behavior of 6061 aluminum alloy for aviation under constant load [J]. Corros. Prot., 2023, 44: 64
|
|
(何 祯, 拜 斌, 张小明 等. 航空用6061铝合金恒载荷应力腐蚀行为 [J]. 腐蚀与防护, 2023, 44: 64)
|
[30] |
Zheng C B, Li C L, Yi G, et al. Corrosion behavior of two kinds of high strength aluminum alloys in simulated marine atmospheric environment [J]. Mater. Prot., 2014, 47: 38
|
|
(郑传波, 李春岭, 益 帼 等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47: 38)
|
[31] |
Wang J. Study of 7075 alloy atmospheric corrosion test in the marine environment [D]. Shenyang: Shenyang Aerospace University, 2011
|
|
(王 洁. 7075铝合金海洋环境大气腐蚀试验研究 [D]. 沈阳: 沈阳航空航天大学, 2011)
|
[32] |
Zhang L W, Zheng L, Zhu L, et al. Stress corrosion testing of 7A52 aluminum alloy and 25CrMnSiA steel weldments in marine atmospheric environment [J]. Equip. Environ. Eng., 2017, 14: 109
|
|
(张伦武, 郑 林, 朱 蕾 等. 7A52铝合金及25CrMnSiA钢焊接件海洋大气应力腐蚀试验研究 [J]. 装备环境工程, 2017, 14: 109)
|
[33] |
Wang X H. Characterization and detection of stainless steel and aluminum alloy during stress corrosion cracking in typical environment [D]. Tianjin: Tianjin University, 2015
|
|
(王学慧. 不锈钢和铝合金在典型环境中的应力腐蚀特征与检测方法 [D]. 天津: 天津大学, 2015)
|
[34] |
Xu T, Zhang C Z, Lu K L, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint [J]. Trans. China Weld. Inst., 2021, 42: 51
|
|
(徐 腾, 张春芝, 鲁宽亮 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性 [J]. 焊接学报, 2021, 42: 51)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|