Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 965-974    DOI: 10.11902/1005.4537.2024.321
Current Issue | Archive | Adv Search |
Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints
HU Na1,2, PENG Wenshan2(), GUO Weimin2, LIU Tiannan2, DUAN Tigang2, LIU Shaotong2
1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

HU Na, PENG Wenshan, GUO Weimin, LIU Tiannan, DUAN Tigang, LIU Shaotong. Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 965-974.

Download:  HTML  PDF(17117KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The marine corrosive environment is complex, and the marine structure itself is also subjected to stress and other effects, which gradually highlights the corrosion and performance degradation problems of high-strength Al-alloy welded joints used in marine equipment. Herein, the corrosion behavior and performance degradation of welded joints of 7-series high-strength Al-alloy under different stresses, while immersion in Qingdao natural seawater at 5 ℃ for different times was studied via a lab simulation set, electrochemical measurement, universal test machine, SEM and XPS, in terms of the corrosion morphology, corrosion products, and degradation regularity of welded joints. The results show that as stress increases and immersion time prolongs, the corrosion tendency of high-strength Al-alloy welded joints increases, and their corrosion resistance gradually decreases; while the corrosion potential of the welded joint becomes more negative, the charge transfer resistance decreases, resulting in lower potential, higher corrosion sensitivity, and poorer corrosion resistance. When subjected to tensile stress exceeding 25%σs, as the pre stress increases, the proportion of oxygen in the corrosion products continues to increase, the corrosion product film is damaged, and the corrosion becomes more severe. With the increase of stress and immersion time, the elongation and cross-sectional shrinkage of the welded joint after fracture decrease, and thus the sensitivity to stress corrosion increases.

Key words:  aluminum alloy      welded joints      low temperature      stress      corrosion      performance degradation     
Received:  01 October 2024      32134.14.1005.4537.2024.321
ZTFLH:  TG174  
Corresponding Authors:  PENG Wenshan, E-mail: pengwenshan1386@126.con

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.321     OR     https://www.jcscp.org/EN/Y2025/V45/I4/965

Fig.1  High-strength Al-alloy welded joint sample
Fig.2  Macroscopic morphologies of high-strength Al-alloy welded joint samples immersed in low temperature seawater for 1 d(a), 5 d (b), 10 d (c) and 20 d (d) under applied stresses of 0 (a1-d1), 25%σs (a2-d2) and 50%σs (a3-d3)
Fig.3  SEM images of high-strength Al-alloy welded joint samples immersed in low temperature seawater for 1 d (a), 10 d (b) and 20 d (c) under the stresses of 0 (a1-c1), 25%σs (a2-c2) and 50%σs (a3-c3)
Pre-stressOAlZnMgCu
046.4545.720.854.450.17
25%σs41.8252.740.874.000.14
50%σs46.7347.411.973.030.38
Table 1  EDS analysis results of the welded joint immersed in low-temperature seawater for 20 d under different stresses
Fig.4  Polarization curves of the welded joint immersed in low-temperature seawater under different stresses for 1 d (a), 5 d (b), 10 d (c) and 20 d (d)
Immersion time / dPre-stressSelf-corrosion potential E0 / VSelf-corrosion current density I0 / A·cm-2
10-0.6520.395 × 10-6
25%σs-0.6932.023 × 10-6
50%σs-0.7544.467 × 10-6
50-0.7570.775 × 10-6
25%σs-0.8564.6 × 10-6
50%σs-0.8206.94 × 10-6
100-0.7660.983 × 10-6
25%σs-0.81315.58 × 10-6
50%σs-0.89715.37 × 10-6
200-0.8012.36 × 10-6
25%σs-0.83812.56 × 10-6
50%σs-0.84617.2 × 10-6
Table 2  Fitting results of polarization curves of the welded joint immersed in low-temperature seawater under different conditions of applied stresses and immersion period
Fig.5  EIS of high-strength Al-alloy welded joint immersed in low temperature seawater under different stresses for 1 d (a), 5 d (b), 10 d (c) and 20 d (d)
Fig.6  Equivalent circuit diagram for fitting EIS
Immersion time / dPre-stressRs / Ω·cm2Rct / 103 Ω·cm2Rf / Ω·cm2
1010.178.8051.328
25%σs7.095.03729.45
50%σs12.742.76432.76
508.297.5773.659
25%σs10.324.2371.489
50%σs6.5540.8652.489
10013.33.850847.2
25%σs6.6793.78329.03
50%σs8.8341.453149.4
2007.813.4092200
25%σs8.5931.5643.391
50%σs6.7250.789538.9
Table 3  Fitting results of EIS of the welded joint under low-temperature seawater conditions
Fig.7  XPS spectra of high-strength Al-alloy welded joint immersed in low-temperature seawater: (a) Al, (b) Mg, (c) Zn
Fig.8  Microscopic fracture morphologies of the welded joint after immersion in low-temperature seawater for 1 d (a) and 15 d (b) under the stresses of 25%σs (a1, b1) and 50%σs (a2, b2)
Immersion time / dPre-stressYield strength / MPaTensile strength / MPa
125%σs211270
50%σs175225
525%σs163241
50%σs150220
1525%σs150218
50%σs145178
Table 4  Tensile data of the welded joint immersed in low-temperature seawater under different conditions of applied stress and immersion time
Immersion time / dPre- stressPost-fracture elongation (δ) / %Section shrinkage (Ψ) / %
125%σs10.8511.383
50%σs10.1511.041
525%σs10.8110.564
50%σs9.2410.220
1525%σs9.8710.250
50%σs8.569.861
Table 5  Fracture data of the welded joint immersed in low-temperature seawater under different conditions of applied stress and immersion time
[1] Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
(柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175)
doi: 10.11902/1005.4537.2021.050
[2] Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
doi: S0166-445X(17)30182-0 pmid: 28763776
[3] Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
doi: 10.1111/cobi.12562 pmid: 26219342
[4] Wu F M, Wang J T, Zhang Y K, et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean [J]. Mech. Electr. Eng. Technol., 2021, 50: 30
(吴凤民, 王江涛, 张永康 等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究 [J]. 机电工程技术, 2021, 50: 30)
[5] Peng W S, Hou J, Yu H L, et al. Corrosion behaviors of aluminum alloys in different harbors [J]. Equip. Environ. Eng., 2019, 16: 8
(彭文山, 侯 健, 余化龙 等. 不同港口海域铝合金腐蚀行为研究 [J]. 装备环境工程, 2019, 16: 8)
[6] Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
(陈志坚, 周学杰, 陈 昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
[7] Li C, Luo X, Zhang W. Research progress on corrosion and protection of typical warship metal materials [J]. Equip. Environ. Eng., 2023, 20: 80
(李 川, 罗 茜, 张 薇. 典型舰船用金属材料腐蚀与防护研究进展 [J]. 装备环境工程, 2023, 20: 80)
[8] Hou Y, Tian Y, Zhao Z P, et al. Corrosion and protection of aluminum alloy for marine engineering [J]. Surf. Technol., 2022, 51: 1
(侯 悦, 田 原, 赵志鹏 等. 海洋工程用铝合金的腐蚀与防护研究进展 [J]. 表面技术, 2022, 51: 1)
[9] Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
(乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
[10] Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
(邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683)
doi: 10.11902/1005.4537.2023.140
[11] Peng W S, Duan T G, Ma L, et al. Corrosion behaviors of 5083 aluminum alloy in tropical marine environment [J]. Equip. Environ. Eng., 2023, 20: 77
(彭文山, 段体岗, 马 力 等. 热带海洋环境中5083铝合金腐蚀行为研究 [J]. 装备环境工程, 2023, 20: 77)
[12] Beura V K, Karanth Y, Darling K, et al. Role of gradient nanograined surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
[13] Gharbi O, Kairy S K, De Lima P R, et al. Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing [J]. npj Mater. Degrad., 2019, 3: 40
[14] Li S, Dong H G, Shi L, et al. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld [J]. Corros. Sci., 2017, 123: 243
[15] Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
[16] Sun X G, Xu X X, Wang Z H, et al. Study on corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint [J]. Anti-Corros. Meth. Mater., 2021, 68: 302
[17] Fleck P, Calleros D, Madsen M, et al. Retrogression and reaging of 7075 T6 aluminum alloy [J]. Mater. Sci. Forum, 2000, 331-337: 649
[18] Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of superplastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans., 1997, 28A: 2113
[19] Robinson J S, Cudd R L. Electrical conductivity variations in X2096, 8090, 7010 and an experimental aluminium lithium alloy [J]. Mater. Sci. Forum, 2000, 331-337: 971
[20] Cooper K R, Young L M, Gangloff R P, et al. The electrode potential dependence of environment-assisted cracking of AA 7050 [J]. Mater. Sci. Forum, 2000, 331-337: 1625
[21] Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
[22] Freixes M L, Zhou X Y, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale [J]. Nat. Commun., 2022, 13: 4290
doi: 10.1038/s41467-022-31964-3 pmid: 35879282
[23] Jones K, Hoeppner D W. Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading [J]. Corros. Sci., 2005, 47: 2185
[24] Turnbull A, Horner D A, Connolly B J. Challenges in modelling the evolution of stress corrosion cracks from pits [J]. Eng. Fract. Mech., 2009, 76: 633
[25] Dollah M. The study of stress corrosion cracking in aluminum alloy 7075 (W) under tensile loading by eddy current measurement [J]. Appl. Mech. Mater., 2011, 83: 216
[26] Tsai W T, Duh J B, Yeh J J, et al. Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5wt%NaCl solution [J]. Corrosion, 1990, 46: 444
[27] Hua T S, Song R G, Zong Y, et al. Corrosion behavior of 7050 aluminum alloy after micro-arc oxidation under constant load in NaCl solution with different pH values [J]. Surf. Technol., 2020, 49: 269
(花天顺, 宋仁国, 宗 玙 等. 恒载荷下的微弧氧化后7050铝合金在不同pH值NaCl溶液中的腐蚀行为 [J]. 表面技术, 2020, 49: 269)
[28] Meng X Q. Experimental study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials [D]. Shanghai: Shanghai Jiao Tong University, 2012
(孟祥琦. 铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究 [D]. 上海: 上海交通大学, 2012)
[29] He Z, Bai B, Zhang X M, et al. Stress corrosion behavior of 6061 aluminum alloy for aviation under constant load [J]. Corros. Prot., 2023, 44: 64
(何 祯, 拜 斌, 张小明 等. 航空用6061铝合金恒载荷应力腐蚀行为 [J]. 腐蚀与防护, 2023, 44: 64)
[30] Zheng C B, Li C L, Yi G, et al. Corrosion behavior of two kinds of high strength aluminum alloys in simulated marine atmospheric environment [J]. Mater. Prot., 2014, 47: 38
(郑传波, 李春岭, 益 帼 等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47: 38)
[31] Wang J. Study of 7075 alloy atmospheric corrosion test in the marine environment [D]. Shenyang: Shenyang Aerospace University, 2011
(王 洁. 7075铝合金海洋环境大气腐蚀试验研究 [D]. 沈阳: 沈阳航空航天大学, 2011)
[32] Zhang L W, Zheng L, Zhu L, et al. Stress corrosion testing of 7A52 aluminum alloy and 25CrMnSiA steel weldments in marine atmospheric environment [J]. Equip. Environ. Eng., 2017, 14: 109
(张伦武, 郑 林, 朱 蕾 等. 7A52铝合金及25CrMnSiA钢焊接件海洋大气应力腐蚀试验研究 [J]. 装备环境工程, 2017, 14: 109)
[33] Wang X H. Characterization and detection of stainless steel and aluminum alloy during stress corrosion cracking in typical environment [D]. Tianjin: Tianjin University, 2015
(王学慧. 不锈钢和铝合金在典型环境中的应力腐蚀特征与检测方法 [D]. 天津: 天津大学, 2015)
[34] Xu T, Zhang C Z, Lu K L, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint [J]. Trans. China Weld. Inst., 2021, 42: 51
(徐 腾, 张春芝, 鲁宽亮 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性 [J]. 焊接学报, 2021, 42: 51)
[1] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[3] LIU Sen, HU Jiayuan, WEN Xiaohan, ZHU Renzheng, LI Yanwei, YANG Xiaojia. Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
[4] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[5] MA Heng, WANG Zhongxue, PANG Kun, ZHANG Qingpu, CUI Zhongyu. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[6] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[7] YANG Songpu, HUANG Shiyu, LI Gang, LIN Yi, GUO Na, LIU Tao, DONG Lihua. Interaction Behavior of Wear and Corrosion of High-strength Marine Steels for Polar Navigation Vessels[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
[8] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[9] HUANG Shiyu, LIU Shichen, YANG Songpu, LIU Jiabing, LI Gang, GUO Na, LIU Tao. Corrosion and Wear Corrosion Behavior of FH40 Marine Steel in Simulated Polar Seawater Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[10] FANG Huanjie, ZHOU Peng, YU Jianhao, WANG Yongxin, YU Bo, PU Jibin. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[11] LI Shunping, DANG Ying, HONG Xiaofeng, NING Fangqiang. Effect of Water Chemistry on Corrosion Behavior of Nickel-based Alloy 690 in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
[12] DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[13] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[14] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[15] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
No Suggested Reading articles found!