Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 297-304    DOI: 10.11902/1005.4537.2014.115
Current Issue | Archive | Adv Search |
Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution
Lijuan FENG1,Kangwen ZHAO2,Huaiyu YANG1(),Nan TANG2,Fuhui WANG1,Tie SHANGGUAN2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
Download:  HTML  PDF(2783KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inhibition performance and synergistic effect of an imidazoline derivative, namely 1-[N,N-bis(hydroxylethylether)-aminoethyl]-2-stearicimidazoline (HASI) with tetraethylenepentamine (TEPA) on the corrosion inhibition of steel rebar in an artificial concrete pore solution containing 3.5%NaCl were investigated using linear polarization, potentialdynamic polarization and electroch-emical impedance spectroscopy (EIS) techniques, while molecular dynamics (MD) simulation was employed to explore the co-adsorption behavior of the composite inhibitors on the metallic iron surface. Results indicate that after the addition of inhibitors, the corrosion current density of steel rebar was reduced and the corrosion resistance of steel rebar was enhanced. With increasing content of HASI in the composite inhibitors, the inhibition efficiency gradually increased, the corrosion potential shifted significantly to negative, and therewith a more positive pitting potential and a wide passive region were observed in comparison with that in the blank solution, which reveal that the chloride-induced corrosion on steel rebar was effectively retarded by the composite inhibitor, in other words, HASI and TEPA exhibited a good synergistic effect on the corrosion inhibition of steel rebar in the artificial concrete pore solution. MD results show that molecules of HASI and TEPA could simultaneously be adsorbed on the metallic iron surface to form a more compact protective film and consequently became a barrier to hinder the access of aggressive species in the corrosive solution to the metal surface, thereby to effectively inhibit the corrosion of steel rebar.

Key words:  steel rebar corrosion      corrosion inhibitor      synergistic effect      molecular dynamics simulation     

Cite this article: 

Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 297-304.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.115     OR     https://www.jcscp.org/EN/Y2015/V35/I4/297

Inhibitor Mole ratio Rp / kΩcm2 IE / %
Blank --- 4.8 ---
HASI --- 11.3 57.5
TEPA --- 6.5 26.2
HASI/TEPA 1∶3 15.9 69.8
HASI/TEPA 1∶1 19.3 75.1
HASI/TEPA 3∶1 33.5 85.7
Table 1  Electrochemical parameters obtained from linear polarization data for the steel rebar electrode after 3 d immersion in 3.5%NaCl saturated Ca(OH)2 solution
Fig.1  Potentiodynamic polarization curves for the steel rebar electrodes after immersion for 3 d in 3.5%NaCl saturated Ca(OH)2 solutions without and with different inhibitors
Inhibitor Mole ratio Ecorr / mV Icorr / μAcm-2 -βc / mVdec-1 βa / mVdec-1 Epit-Ecorr / mV
Blank --- -516 5.1 113 195 304
HASI --- -515 1.9 113 190 468
TEPA --- -503 3.6 119 195 420
HASI/TEPA 1∶3 -496 1.6 120 194 376
HASI/TEPA 1∶1 -608 1.1 115 190 409
HASI/TEPA 3∶1 -637 0.7 112 226 595
Table 2  Electrochemical parameters obtained from potentiodynamic polarization data for steel rebar electrode after 3 d immersion in 3.5%NaCl saturated Ca(OH)2 solutions
Fig.2  Nyquist (a) and Bode (b) plots for the steel rebar electrodes after immersion for 3 d in 3.5%NaCl saturated Ca(OH)2 solutions without and with different inhibitors
Inhibitor Mole ratio Rs Ωcm2 CPE1-Y0 μΩ-1sncm-2 n1 Rct kΩcm2 CPE2-Y0 μΩ-1sncm-2 n2 Rf kΩcm2 η %
Blank --- 11.6 39 0.90 1.5 302.3 0.70 3.3 ---
HASI --- 13.3 29.3 0.85 3.6 223.7 0.49 9.4 58.3
TEPA --- 10.9 32.8 0.90 2.3 257.6 0.62 4.5 34.8
HASI/TEPA 1:3 11 28.8 0.91 4.9 205.8 0.57 14.3 69.4
HASI/TEPA 1:1 13.9 27.1 0.84 6.2 198 0.76 18.7 75.8
HASI/TEPA 3:1 12.6 26.2 0.87 9.8 166.1 0.96 23.1 84.7
Table 3  EIS parameters for steel rebar electrodes after 3 d immersion in 3.5%NaCl saturated Ca(OH)2 solutions without and with different inhibitors
Fig.3  Equivalent circuit used to fit the EIS
Fig.4  SEM images for the steel rebar samples after 28 d immersion in 3.5%NaCl saturated Ca(OH)2 solutions containing 0 mmol/L (a) and 0.2 mmol/L HASI (b), TEPA (c) or HASI/TEPA=3∶1 (mole ratio) (d)
Fig.5  Equilibrium adsorption configurations on Fe(100) surface for different inhibitor molecules: (a) four HASI, (b) four TEPA, (c) one HASI and three TEPA, (d) two HASI and two TEPA, (e) three HASI and one TEPA (the top is side view and the below is top view)
Inhibitor Mole ratio Binding energy / kJmol-1
HASI 100% 682.6
TEPA 100% 421.8
HASI/TEPA 1∶3 702.6
HASI/TEPA 1∶1 717.9
HASI/TEPA 3∶1 728.3
Table 4  Binding energies of different inhibitor molecules on Fe(100) surface
[1] Ke W. Current investigation into the corrosion cost in China[J]. Total Corros. Control, 2003, 17(1): 1 (柯伟. 中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17(1): 1)
[2] S?ylev T A, Richardson M G. Corrosion inhibitors for steel in concrete: State-of-the-art report[J]. Constr. Build. Mater., 2008, 22(4): 609
[3] Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures[J]. Cem. Concr. Res., 2006, 36: 536
[4] Saravanan K, Sathiyanarayanan S, Muralidharan S, et al. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment[J]. Prog. Org. Coat., 2007, 59(2): 160
[5] Hong N F. Development and use of steel bar inhibitor[J]. Indus. Constr., 2005, 35(6): 68 (洪乃丰. 钢筋阻锈剂的发展与应用[J]. 工业建筑, 2005, 35(6): 68)
[6] Criado M, Monticelli C, Fajardo S, et al. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar[J]. Constr. Build. Mater., 2012, 35: 30
[7] Yang R J, Guo Y, Tang F M, et al. Effect of sodium D-gluconate-based inhibitor in preventing corrosion of reinforcing steel in simulated concrete pore solutions[J]. Acta Phys.-Chim. Sin., 2012, 28(8): 1923 (杨榕杰, 郭亚, 唐方苗等. 模拟混凝土孔隙液中D-葡萄糖酸钠复合缓蚀剂对钢筋的阻锈作用[J]. 物理化学学报, 2012, 28(8): 1923)
[8] Feng L J, Yang H Y, Wang F H. Effect of an imidazoline derivative on the protection performance of oxide film formed on carbon steel in saturated Ca(OH)2 solution[J]. Int. J. Electrochem. Sci., 2012, 7: 4064
[9] Feng L J, Yang H Y, Wang F H. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5%NaCl saturated Ca(OH)2 solution[J]. Electrochim. Acta, 2011, 58: 427
[10] Feng L J, Yang H Y, Wang F H. The Inhibition Behavior of Organic Amines for the Steel Rebar in Saturated Ca(OH)2 Solutions Containing 5%NaCl [M]. Beijing: Scientific and Technical Documents Publishing House, 2009 (冯丽娟,杨怀玉,王福会. 高含氯离子混凝土模拟液中有机胺对钢筋的缓蚀行为[M]. 北京: 科学技术文献出版社, 2009)
[11] Dong Z H, Zhu T, Shi W, et al. Inhibition of ethyleneamine on the pitting corrosion of rebar in a synthetic carbonated concrete pore solution[J]. Acta Phys.-Chim. Sin., 2011, 27(4): 905 (董泽华, 朱涛, 石维等. 烯胺阻锈剂对钢筋在模拟碳化混凝土孔隙液中的点蚀抑制[J]. 物理化学学报, 2011, 27(4): 905)
[12] Machnikova E, Whitmire K H, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives[J]. Electrochim. Acta, 2008, 53: 6024
[13] Martinez S, Valek L, Stipanovi? O I. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle[J]. J. Electrochem. Soc., 2007, 154(11): C671
[14] Valek L, Martinez S, Mikulic D, et al. The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions[J]. Corros. Sci., 2008, 50(9): 2705
[15] Flis J, Zakroczymski T. Impedance study of reinforcing steel in simulated pore solution with tannin[J]. J. Electrochem. Soc., 1996, 143(8): 2458
[16] Ozcan M, Dehri I, Erbil M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure[J]. Appl. Surf. Sci., 2004, 236: 155
[17] Valcarce M B, Vazquez M. Steel rebar passivity examined in akaline solutions[J]. Electrochim. Acta, 2008, 53(15): 5007
[18] Monticelli C, Frignani A, Trabanelli G. Corrosion inhibitor of steel in chloride-containing alkaline solutions[J]. J. Appl. Electrochem., 2002, 32(5): 527
[19] Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions[J]. Corros. Sci., 2010, 52: 1268
[20] x Gomez B, Likhanova N V, Aguilar M A D, et al. Theoretical study of a new group of corrosion inhibitors[J]. J. Phys. Chem., 2005, 109(39)A: 8950
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[11] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[13] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[14] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
No Suggested Reading articles found!