Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 983-994    DOI: 10.11902/1005.4537.2024.294
Current Issue | Archive | Adv Search |
Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment
DUAN Jingmin, DONG Yong(), MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Cite this article: 

DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 983-994.

Download:  HTML  PDF(22739KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Al0.5CoCrFeNi high-entropy alloy was smelted by vacuum medium frequency induction melting, followed by homogenization heat-treatment and cold rolling with 40% reduction, and then post-heat treatment at 800, 1000 and 1200 ℃ respectively. The microstructure and mechanical properties, as well as the corrosion behavior in solutions of 0.5 mol/L H2SO4, 0.5 mol/L NaOH and 3.5%NaCl of as the cast alloy and the rolled + post heat-treated alloys were studied by XRD, SEM, EDS, AFM, universal testing machine and electrochemical corrosion test. The microstructure analysis shows that the as-cast high entropy alloy has a typical dendrite structure composed of fcc-phase and bcc-phase (B2) with precipitates of flocculent structure-like fine fcc-phase within the B2-phase, however after rolling+heat treatment, the fine fcc-phase within the B2 phase is completely dissolved, while certain amount of acicular B2-phase is precipitated within the fcc-phase. Mechanical analysis shows that the precipitation of the hard and brittle acicular B2-phase increases the yield strength and hardness of the alloy. After rolling + heat treatment, the potential difference within the B2 phase is eliminated, but the potential difference between B2-phase and fcc-phase is increased, nevertheless, which gradually decreases with the increase of heat treatment temperature. The electrochemical corrosion test results show that in 0.5 mol/L H2SO4 solution, the corrosion properties of the alloy at different temperatures are linearly related to the Cr content in B2-phase. In 0.5 mol/L NaOH solution, the as-cast alloy and rolled + 1000 ℃ heat treated alloy showed excellent corrosion resistance. In contrast, the rolled + 1200 ℃ heat treated alloy has the best corrosion resistance in 3.5%NaCl solution.

Key words:  high-entropy alloy      flocculent fcc phase      needle-like B2 phase      corrosion behavior     
Received:  11 September 2024      32134.14.1005.4537.2024.294
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51801029);Natural Science Foundation of Guangdong Province(2022A0505050052);Natural Science Foundation of Guangdong Province(2022A1515012591)
Corresponding Authors:  DONG Yong, E-mail: dongyong5205@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.294     OR     https://www.jcscp.org/EN/Y2025/V45/I4/983

Fig.1  Dimensions of tensile specimen (unit: mm)
Fig.2  XRD patterns (a) and volume fractions of fcc and bcc (B2) phases (b) for as-cast alloy and as-rolled alloys with heat treatment at different temperatures
Fig.3  BSE images and EDS element mappings of as-cast alloy (a1, a2) and as-rolled alloys with heat treatment at 800 ℃ (b1, b2), 1000 ℃ (c1, c2) and 1200 ℃ (d1, d2)
Alloys with heat treatmentRegionsAlCoCrFeNi
As-castA14.0619.2221.6317.6127.48
B11.4621.1321.9821.0624.37
800 ℃A31.7716.337.2011.4033.30
B8.1223.0423.5423.8221.48
C18.3419.8614.9718.0728.76
1000 ℃A32.7815.516.4910.6634.56
B6.2824.0125.1025.0119.60
C22.7318.7615.1516.8526.51
1200 ℃A30.6116.597.3211.7733.71
B8.5323.3323.2422.7922.11
C28.5911.0413.8217.2429.31
Table 1  EDS determined chemical compositions of the marked regions in Fig.3 for as-cast alloy and as-rolled alloys with heat treatment at different temperatures
Fig.4  Tensile curves (a) and hardness values (b) of as-cast alloy and as-rolled alloys with heat treatment at different temperatures
Alloys with heat treatmentYield strength / MPaFracture strength / MPaFracture strain / %Hardness (HV)
As-cast42072153.9202.06
800 ℃1081120910.8392.53
1000 ℃56199436.9262.23
1200 ℃41188845.8231.37
Table 2  Mechanical properties of as-cast alloy and as-rolled alloys with heat treatment at different temperatures
Fig.5  Tensile fracture morphologies of as-cast alloy (a1, a2) and as-rolled alloys with heat treatment at 800 ℃ (b1, b2), 1000 ℃ (c1, c2) and 1200 ℃ (d1, d2)
Fig.6  SKPFM morphologies (a1, b1) and Volta potential diagrams (a2, b2) of as-cast alloy: (a1) overall view, (b1) B2 phase
Fig.7  SKPFM morphologies (a1-c1) and Volta potential diagrams (a2-c2) of as-rolled alloys with heat treatment at 800 ℃ (a1, a1), 1000 ℃ (b1, b2) and 1200 ℃ (c1, c2)
Fig.8  Potentiodynamic polarization curves of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L H2SO4 solution
AlloysEcorr / VIcorr / μA·cm-2Rs / Ω·cm2CPE1 / 10-5 Ω-1·cm-2·s nn1R1 / kΩ·cm2Σ λ2
As-cast-0.79128.444.739.400.88323.202.97 × 10-4
800 ℃-0.7956.554.689.000.89284.001.62 × 10-4
1000 ℃-0.8091.104.669.920.88270.501.47 × 10-4
1200 ℃-0.7947.685.139.610.87287.701.22 × 10-4
Table 3  Fitting electrochemical parameters of polarization curves and EIS of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L H2SO4 solution
Fig.9  Nyquist (a) and Bode (b) plots of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L H2SO4 solution
Fig.10  Equivalent circuit model for fitting EIS data of alloys in 0.5 mol/L H2SO4 solution
Fig.11  SEM images of as-cast alloy (a) and as-rolled alloys with heat treatment at 800 ℃ (b), 1000 ℃ (c) and 1200 ℃ (d) after corrosion in 0.5 mol/L H2SO4 solution
Fig.12  Potentiodynamic polarization curves of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L NaOH solution
AlloysEcorr / VIcorr / A·cm-2Rs / Ω·cm2CPE1 / 10-5 Ω-1·cm-2·s nn1R1 / kΩ·cm2Σ λ2
As-cast-0.581.0513.672.260.96218.298.62 × 10-4
800 ℃-0.591.1710.592.430.95186.845.31 × 10-4
1000 ℃-0.570.9411.662.480.95216.576.96 × 10-4
1200 ℃-0.581.1911.292.530.95205.303.46 × 10-4
Table 4  Fitting parameters of polarization curves and EIS of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L NaOH solution
Fig.13  Nyquist (a) and Bode (b) plots of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 0.5 mol/L NaOH solution
Fig.14  SEM images of as-cast alloy (a) and as-rolled alloys with heat treatment at 800 ℃ (b), 1000 ℃ (c) and 1200 ℃ (d) in 0.5 mol/L NaOH solution
Fig.15  Potentiodynamic polarization curves of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 3.5%NaCl solution
AlloysEcorr / VIcorr / μA·cm-2Epit / VIpass / μA·cm-2
As-cast-0.330.870.262.05
800 ℃-0.401.690.323.52
1000 ℃-0.401.870.270.27
1200 ℃-0.401.240.410.41
Table 5  Fitting parameters of potentiodynamic polarization curves of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 3.5%NaCl solution
Fig.16  EIS curves of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 3.5% NaCl solution: (a) Nyquist plots, (b) Bode plots
Fig.17  Equivalent circuit for fitting EIS data of alloys in 3.5%NaCl solution
AlloysRsΩ·cm2R1kΩ·cm2R2kΩ·cm2RpkΩ·cm2CPE110-5 Ω-1·cm-2·s nCPE210-5 Ω-1·cm-2·s nn1n2Σ λ2
As-cast20.2031.62282.36313.982.240.560.940.601.44 × 10-4
800 ℃20.5630.31258.69289.002.660.220.930.422.01 × 10-4
1000 ℃26.91208.74184.84393.582.270.730.030.572.28 × 10-4
1200 ℃26.00212.59255.14467.731.960.490.940.632.18 × 10-4
Table 6  Fitting parameters of EIS of as-cast alloy and as-rolled alloys with heat treatment at different temperatures in 3.5%NaCl solution
Fig.18  SEM images of as-cast alloy (a) and as-rolled alloys with heat treatment at 800 ℃ (b), 1000 ℃ (c) and 1200 ℃ (d) after corrosion in 3.5%NaCl solution
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
(向 超, 王家贞, 付华萌 等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107)
[3] Wang Y, Li M Y, Sun L L, et al. Microstructure and corrosion property of FeCrNiCo(Cu/Mn) high entropy alloys [J]. Chin. J. Nonferrous Met., 2020, 30: 94
(王 勇, 李明宇, 孙丽丽 等. FeCrNiCo(Cu/Mn)高熵合金组织及腐蚀性能 [J]. 中国有色金属学报, 2020, 30: 94)
[4] Zhang H K, Huang F, Xu Y F, et al. Microstructure evolution and electrochemical passivation behavior of FeCrMn1.3NiAl x high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 218
(张恒康, 黄 峰, 徐云峰 等. FeCrMn1.3NiAl x 高熵合金显微组织演变及电化学钝化行为 [J]. 中国腐蚀与防护学报, 2022, 42: 218)
doi: 10.11902/1005.4537.2021.080
[5] Zhao K, Jiang P, Wang H H, et al. Corrosion resistance of (FeCoNiCr)100- x Mn x high entropy alloys in NaCl and NaOH solutions [J]. Heat Treat. Met., 2022, 47(5): 40
doi: 10.13251/j.issn.0254-6051.2022.05.006
(赵 堃, 蒋 鹏, 王虎虎 等. (FeCoNiCr)100- x Mn x 高熵合金在NaCl和NaOH溶液中的抗腐蚀性能 [J]. 金属热处理, 2022, 47(5): 40)
[6] Niu X L, Wang L J, Sun D, et al. Research on microstructure and electrochemical properties of Al x FeCoCrNiCu (x = 0.25, 0.5, 1.0) high-entropy alloys [J]. J. Funct. Mater., 2013, 44: 532
(牛雪莲, 王立久, 孙 丹 等. Al x FeCoCrNiCu (x = 0.25、0.5、1.0)高熵合金的组织结构和电化学性能研究 [J]. 功能材料, 2013, 44: 532)
[7] Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: a review [J]. Metals, 2017, 7: 43
[8] Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
[9] Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
[10] Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
[11] Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2008, 491A: 154
[12] Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
[13] Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
[14] Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
[15] Jiang S Y, Lin Z F, Xu H M, et al. Studies on the microstructure and properties of Al x CoCrFeNiTi1- x high entropy alloys [J]. J. Alloy. Compd., 2018, 741: 826
[16] Vaidya M, Prasad A, Parakh A, et al. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying [J]. Mater. Des., 2017, 126: 37
[17] Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2021, 863: 158056
[18] Lu Q Q, Chen X H, Tian W, et al. Corrosion behavior of a non-equiatomic CoCrFeNiTi high-entropy alloy: a comparison with 304 stainless steel in simulated body fluids [J]. J. Alloy. Compd., 2022, 897: 163036
[19] Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
[20] Wu S W, Xu L, Ma X D, et al. Effect of annealing temperatures on microstructure and deformation behavior of Al0.1CrFeCoNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, 805A: 140523
[21] Shi Z J, Wang Z B, Wang X D, et al. Effect of thermally induced B2 phase on the corrosion behavior of an Al0.3CoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2022, 903: 163886
[22] Wei L, Qin W M. Corrosion mechanism of eutectic high-entropy alloy induced by micro-galvanic corrosion in sulfuric acid solution [J]. Corros. Sci., 2022, 206: 110525
[23] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47: 2257
[24] Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
[25] Wang Z, Jin J, Zhang G H, et al. Effect of temperature on the passive film structure and corrosion performance of CoCrFeMoNi high-entropy alloy [J]. Corros. Sci., 2022, 208: 110661
[1] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[2] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[3] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[4] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[5] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[6] PAN Zongyu, LIU Jing, JIANG Zhizhong, LUO Lin, JIA Hanbing, LIU Xinyu. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[7] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[8] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[9] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[10] WANG Yuxue, ZHU Aohong, WANG Liwei, CUI Zhongyu. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[11] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[12] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[13] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[14] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[15] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
No Suggested Reading articles found!