|
|
Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel |
HONG Xiaomu1, WANG Yongqiang1( ), LI Na2, TIAN Kai1, DU Juan1 |
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China 2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China |
|
Cite this article:
HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1285-1294.
|
Abstract The effect of aging treatment at 400-500oC for different times on the microstructure and pitting resistance of Custom455 martensitic age-hardening stainless steel was investigated using OM, XRD, TEM and electrochemical methods. The results show that the microstructure of the ageing-treated steels consists of lath martensite and reversed austenite, and with the change of aging temperature and time, the second phase particles such as Cu-rich phases and Ni3Ti with varying amount and size will be precipitated. For a given aging time, while the aging temperature increased, the amount of reversed austenite will also gradually increase, however the amount and size of Ni3Ti, ε-Cu and other second-phase particles will not change obviously, so that the pitting corrosion resistance of the steel increased; when the aging temperature rises to 600oC, a large number of the second-phase particles of Ni3Ti, ε-Cu and others precipitate out, which leads to a decrease in the pitting corrosion resistance of the steel. When the aging temperature is consistent while the aging time rises to 3 h, the amount of reversed austenite in the steel does not change significantly, but the amount and size of Ni3Ti, ε-Cu and other second-phase particles change significantly with the increasing aging time, which also leads to a decrease in the pitting corrosion resistance of the steel.
|
Received: 20 November 2023
32134.14.1005.4537.2023.365
|
|
Fund: National Natural Science Foundation of China(52171059, 51971003) |
Corresponding Authors:
WANG Yongqiang, E-mail: yqwang@ahut.edu.cn
|
1 |
Jiang Y. Alloying design, microstructures and properties of martensitic ageing stainless steel [M]. Harbin Inst. Technol. Press, 2007
|
|
姜 越. 马氏体时效不锈钢合金化设计与组织性能 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2007
|
2 |
Zhang C, Su J, Liang J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron Steel, 2018, 53(4): 48
|
|
张 超, 苏 杰, 梁剑雄 等. 超高强度不锈钢沉淀行为研究进展 [J]. 钢铁, 2018, 53(4): 48
|
3 |
Yang Z Y, Liu Z B, Liang J X, et al. Development of maraging stainless steel [J]. Trans. Mater. Heat Treat., 2008, 29(4): 1
|
|
杨志勇, 刘振宝, 梁剑雄 等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29(4): 1
|
4 |
Liu Z B, Yang Z Y, Li Q A, et al. Effect of structure transformation in a ultra-high strength maraging stainless steel on its mechanical properties [J]. Heat Treat., 2005, 20(3): 11
|
|
刘振宝, 杨志勇, 李全安 等. 一种超高强度马氏体时效不锈钢的组织转变对力学性能的影响 [J]. 热处理, 2005, 20(3): 11
|
5 |
Afshari E, Ghaffari M, Nemani A V, et al. Effect of heat treatment on microstructure and tribological performance of PH 13-8Mo stainless steel fabricated via wire arc additive manufacturing [J]. Wear, 2023, 526/527: 204947
|
6 |
Li K X, Zou D N, Zhang W, et al. Effect of aging temperature on microstructure and properties of Co-Cu alloying maraging hardening stainless steel [J]. Heat Treat. Met., 2017, 42(11): 72
|
|
李科欣, 邹德宁, 张 威 等. 时效温度对Co-Cu合金化马氏体时效硬化不锈钢组织性能的影响 [J]. 金属热处理, 2017, 42(11): 72
|
7 |
Dennies D P. Proposed theory for the hydrogen embrittlement resistance of martensitic precipitation age-hardening stainless steels such as custom 455 [J]. J. Fail. Anal. Prev., 2013, 13: 433
|
8 |
Liu X, Zou D N, Han T, et al. Effect of Co on microstructure and properties of maraging stainless steel [J]. Heat Treat Met., 2018, 43(11): 16
|
|
刘 星, 邹德宁, 韩 彤 等. Co对马氏体时效硬化不锈钢组织和性能的影响 [J]. 金属热处理, 2018, 43(11): 16
|
9 |
Farahat A I Z, Hamdy A S. Influence of hot forging and alloying with Al on the electrochemical behavior and mechanical properties of austenitic stainless steel [J]. Mater. Des., 2014, 57: 538
|
10 |
Zhang Z H, Jiang S Z, Zhao L, et al. Microstructure and properties of martensite age-hardening stainless steel with vacuum heat treatment [J]. Vacuum, 2018, 55(4): 65
|
|
张忠和, 蒋申柱, 赵 亮 等. 马氏体时效硬化不锈钢真空热处理的组织和性能 [J]. 真空, 2018, 55(4): 65
|
11 |
Zhang X. Study on electrochemical properties of Co-containing martensitic age-hardened stainless steels [D]. Xi’an: Xi`an University of Architecture and Technology, 2019
|
|
张 欣. 含钴马氏体时效硬化不锈钢的电化学性能研究 [D]. 西安: 西安建筑科技大学, 2019
|
12 |
Liu Z B, Yang Z Y, Liang J X, et al. Growth behavior and precipitation of reverted austenite in ultra-high strength marageing stainless steel [J]. Heat Treat. Met., 2010, 35(2): 11
|
|
刘振宝, 杨志勇, 梁剑雄 等. 超高强度马氏体时效不锈钢中逆转变奥氏体的析出与长大行为 [J]. 金属热处理, 2010, 35(2): 11
|
13 |
Zhao Y G, Liu W, Fan Y M, et al. Effect of Cr content on the passivation behavior of Cr alloy steel in a CO2 aqueous environment containing silty sand [J]. Corros. Sci., 2020, 168: 108591
|
14 |
Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-Advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
|
15 |
Jiang W. Research on microstructures and properties in super martensitic stainless steel and formation mechanism of reversed austenite [D]. Kunming: Kunming University of Science and Technology, 2014
|
|
姜 雯. 超级马氏体不锈钢组织性能及逆变奥氏体机制的研究 [D]. 昆明: 昆明理工大学, 2014
|
16 |
Liu Z B, Song W S, Yang Z Y, et al. Effect of aging treatment on microstructure and mechanical properties of a ultra-high strength maraging stainless steel [J]. Trans. Mater. Heat Treat., 2005, 26(4): 52
|
|
刘振宝, 宋为顺, 杨志勇 等. 时效对超高强马氏体时效不锈钢组织与性能的影响 [J]. 材料热处理学报, 2005, 26(4): 52
|
17 |
Sun G Y, Chen J, Peng J C, et al. Characterization of nano-precipitates in Custom 455 stainless steel by transmission electron microscopy and atom probe tomography [J]. Mater. Charact., 2023, 205: 113308
|
18 |
Stiller K, Hättestrand M, Danoix F. Precipitation in 9Ni-12Cr-2Cu maraging steels [J]. Acta Mater., 1998, 46: 6063
|
19 |
Sha W. Thermodynamic calculations for precipitation in maraging steels [J]. Mater. Sci. Technol., 2000, 16: 1434
|
20 |
Andersson M, Stiller K, Hättestrand M. Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels [J]. Surf. Interface Anal., 2007, 39: 195
|
21 |
Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
|
22 |
Wang P, Zheng W W, Dai X, et al. Prominent role of reversed austenite on corrosion property of super 13Cr martensitic stainless steel [J]. J. Mater. Res. Technol., 2023, 22: 1753
|
23 |
Zhao Y G, Liu W, Zhang T Y, et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel [J]. Corros. Sci., 2021, 189: 109580
|
24 |
Man C, Dong C F, Kong D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corros. Sci., 2019, 151: 108
|
25 |
Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
|
|
王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
|
26 |
Yuan F, Wei G Y, Gao S R, et al. Tuning the pitting performance of a Cr-13 type martensitic stainless steel by tempering time [J]. Corros. Sci., 2022, 203: 110346
|
27 |
Pan Q F, Niu B, Jia Y Z, et al. Effect of heat treatment on microstructure and mechanical properties of Fe-12Cr martensitic steel [J]. Trans. Mater. Heat Treat., 2020, 41(5): 102
|
|
潘钱付, 牛 犇, 贾玉振 等. 热处理工艺对Fe-12Cr马氏体钢组织与力学性能的影响 [J]. 材料热处理学报, 2020, 41(5): 102
doi: 10.13289/j.issn.1009-6264.2019-0547
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|