Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1285-1294    DOI: 10.11902/1005.4537.2023.365
Current Issue | Archive | Adv Search |
Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel
HONG Xiaomu1, WANG Yongqiang1(), LI Na2, TIAN Kai1, DU Juan1
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article: 

HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1285-1294.

Download:  HTML  PDF(15043KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aging treatment at 400-500oC for different times on the microstructure and pitting resistance of Custom455 martensitic age-hardening stainless steel was investigated using OM, XRD, TEM and electrochemical methods. The results show that the microstructure of the ageing-treated steels consists of lath martensite and reversed austenite, and with the change of aging temperature and time, the second phase particles such as Cu-rich phases and Ni3Ti with varying amount and size will be precipitated. For a given aging time, while the aging temperature increased, the amount of reversed austenite will also gradually increase, however the amount and size of Ni3Ti, ε-Cu and other second-phase particles will not change obviously, so that the pitting corrosion resistance of the steel increased; when the aging temperature rises to 600oC, a large number of the second-phase particles of Ni3Ti, ε-Cu and others precipitate out, which leads to a decrease in the pitting corrosion resistance of the steel. When the aging temperature is consistent while the aging time rises to 3 h, the amount of reversed austenite in the steel does not change significantly, but the amount and size of Ni3Ti, ε-Cu and other second-phase particles change significantly with the increasing aging time, which also leads to a decrease in the pitting corrosion resistance of the steel.

Key words:  Martensitic aging stainless steel      aging treatment      pitting      reversed austenite      copper-rich precipitation phase     
Received:  20 November 2023      32134.14.1005.4537.2023.365
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52171059, 51971003)
Corresponding Authors:  WANG Yongqiang, E-mail: yqwang@ahut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.365     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1285

Fig.1  Calculated phase diagram of Custom455 steel by JMatPro software
Fig.2  Metallographic structures of Custom455 steel after solid solution (a) and aging (b-i) heat treatments: (b) 400oC/3 h, (c) 450oC/3 h, (d) 500oC/3 h, (e) 550oC/3 h, (f) 600oC/3 h, (g) 500oC/1 h, (h) 550oC/1 h, (i) 600oC/1 h
Fig.3  XRD patterns of Custom455 steel after aging at different temperatures for 1 h (a) and 3 h (b)
Fig.4  Statistical values of the contents of reversed austenite in Custom455 steel aged at different temperatures
Fig.5  TEM images of Custom455 steel after aging treatments with different parameters: (a) 400oC/3 h, (b) 500oC/1 h, (c) 500oC/3 h, (d) 600oC/1 h, (e, f) 600oC/3 h
PositionTiCrNiMoMnFe
P-10.2113.726.500.220.5378.64
P-22.2110.6813.720.340.3264.44
Table 1  EDS results of the marked points in Fig.5f for the specimen aged at 600oC for 3 h
Fig. 6  TEM images of Custom455 steel aged at 500oC (a, b) and 600oC (c, d) for 1 h (a, c) and 3 h (b, d), respectively
Fig.7  Precipitation phases of Custom455 steel after aging at 500oC for 3 h: (a) Ni3Ti, (b, c) ε-Cu
Fig.8  Polarization curves of Custom455 steel aged for 1 and 3 h at 400oC (a), 450oC (b), 500oC (c), 550oC (d) and 600oC (e)
Fig.9  Polarization curves of Custom455 steel after aging treatments at different temperatures for 1 h (a) and 3 h (b)
Fig.10  Pitting potentials of Custom455 steel aged at different temperatures for 1 and 3 h
Fig.11  Equivalent circuit diagram for EIS fitting
Fig.12  Nyquist plots of Custom455 steel after aging treatments for 1 and 3 h at 400oC (a), 450oC (b), 500oC (c), 550oC (d) and 600oC (e)
Fig.13  Nyquist plots of Custom455 steel after aging treatments at different temperatures for 1 h (a) and 3 h (b)
Fig.14  Bode plots of Custom455 steel after aging treatments at different temperatures for 1 h (a) and 3 h (b)
SpecimenRs / Ω·cm2CPE-T / F·cm-2·s nCPE-nRp / Ω·cm2
Solid solution2.6231.5493 × 10-40.817563165
400oC-1 h2.0451.0443 × 10-40.836134278
450oC-1 h2.4849.018 × 10-50.829985357
500oC-1 h2.8927.4562 × 10-50.846897622
550oC-1 h2.796.2188 × 10-50.8823511443
600oC-1 h3.2721.0213 × 10-40.829425131
Table 2  Fitting electrochemical parameters of EIS of Custom455 stainless steel with 1 h aging in 3.5%NaCl solution
SpecimenRs / Ω·cm2CPE-T / F·cm-2·s nCPE-nRp / Ω·cm2
Solid solution2.6231.5493 × 10-40.817563165
400oC-3 h4.9171.227 × 10-40.842273707
450oC-3 h2.3229.2448 × 10-50.840434261
500oC-3 h2.9178.1282 × 10-50.807684304
550oC-3 h2.8887.2198 × 10-50.859679138
600oC-3 h3.2079.8621 × 10-50.841443690
Table 3  Fitting electrochemical parameters of EIS of Custom455 stainless steel with 3 h aging in 3.5%NaCl solution
Fig.15  Pitting morphologies of Custom455 steel after solid solution (a) and aging treatments at 400oC for 3 h (b), 500oC for 3 h (c), 600oC for 1 h (d) and 600oC for 3 h (e)
1 Jiang Y. Alloying design, microstructures and properties of martensitic ageing stainless steel [M]. Harbin Inst. Technol. Press, 2007
姜 越. 马氏体时效不锈钢合金化设计与组织性能 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2007
2 Zhang C, Su J, Liang J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron Steel, 2018, 53(4): 48
张 超, 苏 杰, 梁剑雄 等. 超高强度不锈钢沉淀行为研究进展 [J]. 钢铁, 2018, 53(4): 48
3 Yang Z Y, Liu Z B, Liang J X, et al. Development of maraging stainless steel [J]. Trans. Mater. Heat Treat., 2008, 29(4): 1
杨志勇, 刘振宝, 梁剑雄 等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29(4): 1
4 Liu Z B, Yang Z Y, Li Q A, et al. Effect of structure transformation in a ultra-high strength maraging stainless steel on its mechanical properties [J]. Heat Treat., 2005, 20(3): 11
刘振宝, 杨志勇, 李全安 等. 一种超高强度马氏体时效不锈钢的组织转变对力学性能的影响 [J]. 热处理, 2005, 20(3): 11
5 Afshari E, Ghaffari M, Nemani A V, et al. Effect of heat treatment on microstructure and tribological performance of PH 13-8Mo stainless steel fabricated via wire arc additive manufacturing [J]. Wear, 2023, 526/527: 204947
6 Li K X, Zou D N, Zhang W, et al. Effect of aging temperature on microstructure and properties of Co-Cu alloying maraging hardening stainless steel [J]. Heat Treat. Met., 2017, 42(11): 72
李科欣, 邹德宁, 张 威 等. 时效温度对Co-Cu合金化马氏体时效硬化不锈钢组织性能的影响 [J]. 金属热处理, 2017, 42(11): 72
7 Dennies D P. Proposed theory for the hydrogen embrittlement resistance of martensitic precipitation age-hardening stainless steels such as custom 455 [J]. J. Fail. Anal. Prev., 2013, 13: 433
8 Liu X, Zou D N, Han T, et al. Effect of Co on microstructure and properties of maraging stainless steel [J]. Heat Treat Met., 2018, 43(11): 16
刘 星, 邹德宁, 韩 彤 等. Co对马氏体时效硬化不锈钢组织和性能的影响 [J]. 金属热处理, 2018, 43(11): 16
9 Farahat A I Z, Hamdy A S. Influence of hot forging and alloying with Al on the electrochemical behavior and mechanical properties of austenitic stainless steel [J]. Mater. Des., 2014, 57: 538
10 Zhang Z H, Jiang S Z, Zhao L, et al. Microstructure and properties of martensite age-hardening stainless steel with vacuum heat treatment [J]. Vacuum, 2018, 55(4): 65
张忠和, 蒋申柱, 赵 亮 等. 马氏体时效硬化不锈钢真空热处理的组织和性能 [J]. 真空, 2018, 55(4): 65
11 Zhang X. Study on electrochemical properties of Co-containing martensitic age-hardened stainless steels [D]. Xi’an: Xi`an University of Architecture and Technology, 2019
张 欣. 含钴马氏体时效硬化不锈钢的电化学性能研究 [D]. 西安: 西安建筑科技大学, 2019
12 Liu Z B, Yang Z Y, Liang J X, et al. Growth behavior and precipitation of reverted austenite in ultra-high strength marageing stainless steel [J]. Heat Treat. Met., 2010, 35(2): 11
刘振宝, 杨志勇, 梁剑雄 等. 超高强度马氏体时效不锈钢中逆转变奥氏体的析出与长大行为 [J]. 金属热处理, 2010, 35(2): 11
13 Zhao Y G, Liu W, Fan Y M, et al. Effect of Cr content on the passivation behavior of Cr alloy steel in a CO2 aqueous environment containing silty sand [J]. Corros. Sci., 2020, 168: 108591
14 Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-Advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
15 Jiang W. Research on microstructures and properties in super martensitic stainless steel and formation mechanism of reversed austenite [D]. Kunming: Kunming University of Science and Technology, 2014
姜 雯. 超级马氏体不锈钢组织性能及逆变奥氏体机制的研究 [D]. 昆明: 昆明理工大学, 2014
16 Liu Z B, Song W S, Yang Z Y, et al. Effect of aging treatment on microstructure and mechanical properties of a ultra-high strength maraging stainless steel [J]. Trans. Mater. Heat Treat., 2005, 26(4): 52
刘振宝, 宋为顺, 杨志勇 等. 时效对超高强马氏体时效不锈钢组织与性能的影响 [J]. 材料热处理学报, 2005, 26(4): 52
17 Sun G Y, Chen J, Peng J C, et al. Characterization of nano-precipitates in Custom 455 stainless steel by transmission electron microscopy and atom probe tomography [J]. Mater. Charact., 2023, 205: 113308
18 Stiller K, Hättestrand M, Danoix F. Precipitation in 9Ni-12Cr-2Cu maraging steels [J]. Acta Mater., 1998, 46: 6063
19 Sha W. Thermodynamic calculations for precipitation in maraging steels [J]. Mater. Sci. Technol., 2000, 16: 1434
20 Andersson M, Stiller K, Hättestrand M. Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels [J]. Surf. Interface Anal., 2007, 39: 195
21 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
22 Wang P, Zheng W W, Dai X, et al. Prominent role of reversed austenite on corrosion property of super 13Cr martensitic stainless steel [J]. J. Mater. Res. Technol., 2023, 22: 1753
23 Zhao Y G, Liu W, Zhang T Y, et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel [J]. Corros. Sci., 2021, 189: 109580
24 Man C, Dong C F, Kong D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corros. Sci., 2019, 151: 108
25 Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
26 Yuan F, Wei G Y, Gao S R, et al. Tuning the pitting performance of a Cr-13 type martensitic stainless steel by tempering time [J]. Corros. Sci., 2022, 203: 110346
27 Pan Q F, Niu B, Jia Y Z, et al. Effect of heat treatment on microstructure and mechanical properties of Fe-12Cr martensitic steel [J]. Trans. Mater. Heat Treat., 2020, 41(5): 102
潘钱付, 牛 犇, 贾玉振 等. 热处理工艺对Fe-12Cr马氏体钢组织与力学性能的影响 [J]. 材料热处理学报, 2020, 41(5): 102
doi: 10.13289/j.issn.1009-6264.2019-0547
[1] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[2] YANG Cheng, YANG Guangming, WANG Jianjun, MIAO Xueliang, ZHANG Yi, SUN Baozhuang, LIU Zhiyong. Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[3] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[4] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[5] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[6] LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[7] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[11] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[12] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[13] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[14] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[15] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
No Suggested Reading articles found!