Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 229-236    DOI: 10.11902/1005.4537.2023.003
Current Issue | Archive | Adv Search |
Corrosion Behavior of 5083 Al-alloy under Magnetic Field
XIONG Yiming1, MEI Wan1, WANG Zehua1(), YU Rui1, XU Shiyao1, WU Lei2, ZHANG Xin1,2()
1.College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2.Jiangsu Technical Center for Wind Energy Engineering, Nanjing 210008, China
Cite this article: 

XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 229-236.

Download:  HTML  PDF(6162KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 5083 Al-alloy under magnetic field was studied by immersion test, electrochemical measurement, scanning electron microscope (SEM), energy spectrum analyzer (EDS) and electrochemical workstation, et al. The results indicated that the magnetic field could affect the motion of charged particles in the corrosive medium and inhibited the effect of destroying effect of Cl- on passivation film. The applied magnetic field could rise the free corrosion- and pitting corrosion- potentials, and reduce the corrosion current density of 5083 Al-alloy. At the same time, the number and size of pits under magnetic field were lower than those without applied magnetic field. Magnetic field can reduce the pitting sensitivity and corrosion rate of 5083 Al-alloy. The inhibition effect is enhanced with the increase of magnetic field intensity.

Key words:  5083 Al-alloy      magnetic field      corrosion behavior      pitting corrosion     
Received:  09 January 2023      32134.14.1005.4537.2023.003
ZTFLH:  TG.174.442  
Fund: Open Fund of Jiangsu Technical Center for Wind Energy Engineering(ZK22-03-08)
Corresponding Authors:  WANG Zehua, E-mail: zhwang@hhu.edu.cn
ZHANG Xin, E-mail: zhangxin.007@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.003     OR     https://www.jcscp.org/EN/Y2024/V44/I1/229

Fig.1  Mass loss of 5083 Al-alloy in 3.5%NaCl solution under different magnetic fields
Fig.2  Macroscopic morphology of 5083 Al-alloy after 30 d immersion test in 3.5%NaCl solution under 0 T (a), 0.2 T (b) and 0.4 T (c) magnetic fields
Fig.3  SEM images of 5083 Al-alloy in 3.5%NaCl solution for 30 d under 0 T (a), 0.2 T (b) and 0.4 T (c) magnetic fields
PositionOMgAlCl
A49.397.6237.725.28
B47.748.3138.755.21
C48.295.3044.591.82
Table 1  EDS result of 5083 Al-alloy corroded for 30 d in 3.5%NaCl under different magnetic fields (mass fraction / %)
Fig.4  OCP curves of 5083 alloy under different strength of magnetic fields
Fig.5  Nyquist (a) and Bode plots (b) and equivalent circuit (c) of 5083 Al-alloy under different strength of magnetic fields
Magnetic field strength / TRsQ1n1R1Q2n2R2
Ω·cm2F·cm2(0 < n < 1)Ω·cm2F·cm2(0 < n < 1)Ω·cm2
08.8361.75 × 10-50.919931617.05 × 10-40.72243584
0.26.4742.26 × 10-50.906947774.60 × 10-30.95454153
0.48.3171.30 × 10-50.880287734.19 × 10-30.866614100
Table 2  Parameters of the equivalent elements in equivalent circuit of 5083 Al-alloy under different strength of magnetic fields
Fig.6  Potentiodynamic polarization curves of 5083 Al-alloy under different strength of magnetic fields and corrosion time
TimehMF / TEcorrVIcorrμA·cm-2EpitVRpΩ·cm2

0

0-1.1568.735-0.765128.53
0.2-1.1348.716-0.749267.46
0.4-1.1025.842-0.738353.27

24

0-1.20838.378-0.736175.86
0.2-1.15315.984-0.715193.95
0.4-1.1428.936-0.703301.74
Table 3  Fitting parameters derived from the polarization curves of 5083 Al-alloy under different strength of magnetic fields
1 Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
吕战鹏, 黄德伦, 杨 武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
2 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl Solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 501
3 Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations [J]. Mater. Prot., 2021, 54(1): 7
姜 超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响 [J]. 材料保护, 2021, 54(1): 7
4 Huang L P, Zhang X, Xiong Y M, et al. Corrosion behavior of Al-3.0-Mg-xRE/Fe alloys under magnetic field of different intensities [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 833
黄连鹏, 张 欣, 熊伊铭 等. 不同磁场强度下铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 833
doi: 10.11902/1005.4537.2021.247
5 Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt.% Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
doi: 10.1016/j.jallcom.2016.12.184
6 Zhang X, Wang Z H, Zhou Z H, et al. Corrosion behavior of Al-3.0% Mg alloy in NaCl solution under magnetic field [J]. Rare Met., 2017, 36: 627
doi: 10.1007/s12598-016-0785-5
7 Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
doi: 10.1016/j.intermet.2020.107037
8 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
9 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
doi: 10.1016/j.electacta.2008.10.055
10 Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
doi: 10.1016/j.corsci.2007.07.009
11 Yang G H, Zhou Z H, Zhang X, et al. Influence of magnetic field on corrosion behavior of Al-Mg alloys with different Mg content [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 633
杨光恒, 周泽华, 张 欣 等. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 633
doi: 10.11902/1005.4537.2020.236
12 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
doi: 10.1149/1.2086807
13 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
doi: 10.1016/S1388-2481(01)00136-9
14 Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
15 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
16 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
17 Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part II: EIS investigation [J]. Electrochim. Acta, 2001, 46: 2631
doi: 10.1016/S0013-4686(01)00476-5
18 Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloy. Compd., 2014, 612: 42
doi: 10.1016/j.jallcom.2014.05.128
19 Luo S Z, Elouarzaki K, Xu Z J. Electrochemistry in magnetic fields [J]. Angew. Chem. Int. Ed., 2022, 61: e202203564
doi: 10.1002/anie.v61.27
20 Gatard V, Deseure J, Chatenet M. Use of magnetic fields in electrochemistry: a selected review [J]. Curr. Opin. Electrochem., 2020, 23: 96
21 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
doi: 10.1016/j.elecom.2014.02.006
22 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
doi: 10.1016/j.elecom.2014.02.005
23 Vincent I, Choi B, Nakoji M, et al. Pulsed current water splitting electrochemical cycle for hydrogen production [J]. Int. J. Hydrogen Energy, 2018, 43: 10240
24 Monzon L M A, Nair V, Reilly B, et al. Magnetically-induced flow during electropolishing [J]. J. Electrochem. Soc., 2018, 165: E679
doi: 10.1149/2.0581813jes
25 Liu H B, Pan L M, Qin Q J, et al. Experimental and numerical investigation of gas–liquid flow in water electrolysis under magnetic field [J]. J. Electroanal. Chem., 2019, 832: 293
26 Weier T, Hüller J, Gerbeth G, et al. Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis [J]. Chem. Eng. Sci., 2005, 60: 293
doi: 10.1016/j.ces.2004.07.060
27 Katz E, Lioubashevski O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:  enhanced performance of biofuel cells [J]. J. Am. Chem. Soc., 2005, 127: 3979
doi: 10.1021/ja044157t
28 Udagawa C, Ueno M, Hisaki T, et al. Magnetic field effects on electroless deposition of lead Metal—Lorentz Force Effects— [J]. Bull. Chem. Soc. Jpn., 2018, 91: 165
doi: 10.1246/bcsj.20170238
29 Weston M C, Fritsch I. Manipulating fluid flow on a chip through controlled-current redox magnetohydrodynamics [J]. Sens. Actuators B: Chem., 2012, 173: 935
doi: 10.1016/j.snb.2012.07.006
30 Weston M C, Gerner M D, Fritsch I. Magnetic fields for fluid motion [J]. Anal. Chem., 2010, 82: 3411
doi: 10.1021/ac901783n pmid: 20380431
31 Zhang X, Mei W, Huang L P, et al. Galvanic corrosion behavior of 5083 alloy/H62 brass couple under magnetic field [J]. J. Mater. Res. Technol., 2023, 22: 192
doi: 10.1016/j.jmrt.2022.11.140
32 Despić A R, Dražić D M, Purenović M M, et al. Electrochemical properties of aluminium alloys containing indium, gallium and thallium [J]. J. Appl. Electrochem., 1976, 6: 527
33 Ford F P, Burstein G T, Hoar T P. Bare surface reaction rates and their relation to environment controlled cracking of aluminum alloys: I. Bare surface reaction rates on aluminum-7 weight percent magnesium in aqueous solutions [J]. J. Electrochem. Soc., 1980, 127: 1325
doi: 10.1149/1.2129893
34 Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
35 Rhen F M F, Coey J M D. Magnetic field effect on autocatalysis: Ag and Cu in concentrated nitric acid [J]. J. Phys. Chem. B, 2006, 110: 6274
doi: 10.1021/jp057585+
36 O'Brien R N, Santhanam K S V. Electrochemical hydrodynamics in magnetic fields with laser interferometry: influence of paramagnetic ions [J]. J. Appl. Electrochem., 1990, 20: 427
37 Waskaas M, Kharkats Y I. Effect of magnetic fields on convection in solutions containing paramagnetic ions [J]. J. Electroanal. Chem., 2001, 502: 51
doi: 10.1016/S0022-0728(00)00528-3
[1] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[2] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[3] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[5] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[6] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[8] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[9] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[10] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[11] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[12] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[15] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
No Suggested Reading articles found!