|
|
Corrosion Behavior of 5083 Al-alloy under Magnetic Field |
XIONG Yiming1, MEI Wan1, WANG Zehua1( ), YU Rui1, XU Shiyao1, WU Lei2, ZHANG Xin1,2( ) |
1.College of Mechanics and Materials, Hohai University, Nanjing 211100, China 2.Jiangsu Technical Center for Wind Energy Engineering, Nanjing 210008, China |
|
Cite this article:
XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 229-236.
|
Abstract The corrosion behavior of 5083 Al-alloy under magnetic field was studied by immersion test, electrochemical measurement, scanning electron microscope (SEM), energy spectrum analyzer (EDS) and electrochemical workstation, et al. The results indicated that the magnetic field could affect the motion of charged particles in the corrosive medium and inhibited the effect of destroying effect of Cl- on passivation film. The applied magnetic field could rise the free corrosion- and pitting corrosion- potentials, and reduce the corrosion current density of 5083 Al-alloy. At the same time, the number and size of pits under magnetic field were lower than those without applied magnetic field. Magnetic field can reduce the pitting sensitivity and corrosion rate of 5083 Al-alloy. The inhibition effect is enhanced with the increase of magnetic field intensity.
|
Received: 09 January 2023
32134.14.1005.4537.2023.003
|
|
Fund: Open Fund of Jiangsu Technical Center for Wind Energy Engineering(ZK22-03-08) |
Corresponding Authors:
WANG Zehua, E-mail: zhwang@hhu.edu.cn ZHANG Xin, E-mail: zhangxin.007@163.com
|
1 |
Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
|
|
吕战鹏, 黄德伦, 杨 武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
|
2 |
Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl Solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
|
|
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 501
|
3 |
Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations [J]. Mater. Prot., 2021, 54(1): 7
|
|
姜 超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响 [J]. 材料保护, 2021, 54(1): 7
|
4 |
Huang L P, Zhang X, Xiong Y M, et al. Corrosion behavior of Al-3.0-Mg-xRE/Fe alloys under magnetic field of different intensities [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 833
|
|
黄连鹏, 张 欣, 熊伊铭 等. 不同磁场强度下铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 833
doi: 10.11902/1005.4537.2021.247
|
5 |
Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt.% Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
doi: 10.1016/j.jallcom.2016.12.184
|
6 |
Zhang X, Wang Z H, Zhou Z H, et al. Corrosion behavior of Al-3.0% Mg alloy in NaCl solution under magnetic field [J]. Rare Met., 2017, 36: 627
doi: 10.1007/s12598-016-0785-5
|
7 |
Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
doi: 10.1016/j.intermet.2020.107037
|
8 |
Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
|
9 |
Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
doi: 10.1016/j.electacta.2008.10.055
|
10 |
Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
doi: 10.1016/j.corsci.2007.07.009
|
11 |
Yang G H, Zhou Z H, Zhang X, et al. Influence of magnetic field on corrosion behavior of Al-Mg alloys with different Mg content [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 633
|
|
杨光恒, 周泽华, 张 欣 等. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 633
doi: 10.11902/1005.4537.2020.236
|
12 |
Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
doi: 10.1149/1.2086807
|
13 |
Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
doi: 10.1016/S1388-2481(01)00136-9
|
14 |
Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
|
15 |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
|
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
|
16 |
Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
|
|
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
|
17 |
Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part II: EIS investigation [J]. Electrochim. Acta, 2001, 46: 2631
doi: 10.1016/S0013-4686(01)00476-5
|
18 |
Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloy. Compd., 2014, 612: 42
doi: 10.1016/j.jallcom.2014.05.128
|
19 |
Luo S Z, Elouarzaki K, Xu Z J. Electrochemistry in magnetic fields [J]. Angew. Chem. Int. Ed., 2022, 61: e202203564
doi: 10.1002/anie.v61.27
|
20 |
Gatard V, Deseure J, Chatenet M. Use of magnetic fields in electrochemistry: a selected review [J]. Curr. Opin. Electrochem., 2020, 23: 96
|
21 |
Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
doi: 10.1016/j.elecom.2014.02.006
|
22 |
Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
doi: 10.1016/j.elecom.2014.02.005
|
23 |
Vincent I, Choi B, Nakoji M, et al. Pulsed current water splitting electrochemical cycle for hydrogen production [J]. Int. J. Hydrogen Energy, 2018, 43: 10240
|
24 |
Monzon L M A, Nair V, Reilly B, et al. Magnetically-induced flow during electropolishing [J]. J. Electrochem. Soc., 2018, 165: E679
doi: 10.1149/2.0581813jes
|
25 |
Liu H B, Pan L M, Qin Q J, et al. Experimental and numerical investigation of gas–liquid flow in water electrolysis under magnetic field [J]. J. Electroanal. Chem., 2019, 832: 293
|
26 |
Weier T, Hüller J, Gerbeth G, et al. Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis [J]. Chem. Eng. Sci., 2005, 60: 293
doi: 10.1016/j.ces.2004.07.060
|
27 |
Katz E, Lioubashevski O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells [J]. J. Am. Chem. Soc., 2005, 127: 3979
doi: 10.1021/ja044157t
|
28 |
Udagawa C, Ueno M, Hisaki T, et al. Magnetic field effects on electroless deposition of lead Metal—Lorentz Force Effects— [J]. Bull. Chem. Soc. Jpn., 2018, 91: 165
doi: 10.1246/bcsj.20170238
|
29 |
Weston M C, Fritsch I. Manipulating fluid flow on a chip through controlled-current redox magnetohydrodynamics [J]. Sens. Actuators B: Chem., 2012, 173: 935
doi: 10.1016/j.snb.2012.07.006
|
30 |
Weston M C, Gerner M D, Fritsch I. Magnetic fields for fluid motion [J]. Anal. Chem., 2010, 82: 3411
doi: 10.1021/ac901783n
pmid: 20380431
|
31 |
Zhang X, Mei W, Huang L P, et al. Galvanic corrosion behavior of 5083 alloy/H62 brass couple under magnetic field [J]. J. Mater. Res. Technol., 2023, 22: 192
doi: 10.1016/j.jmrt.2022.11.140
|
32 |
Despić A R, Dražić D M, Purenović M M, et al. Electrochemical properties of aluminium alloys containing indium, gallium and thallium [J]. J. Appl. Electrochem., 1976, 6: 527
|
33 |
Ford F P, Burstein G T, Hoar T P. Bare surface reaction rates and their relation to environment controlled cracking of aluminum alloys: I. Bare surface reaction rates on aluminum-7 weight percent magnesium in aqueous solutions [J]. J. Electrochem. Soc., 1980, 127: 1325
doi: 10.1149/1.2129893
|
34 |
Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
|
35 |
Rhen F M F, Coey J M D. Magnetic field effect on autocatalysis: Ag and Cu in concentrated nitric acid [J]. J. Phys. Chem. B, 2006, 110: 6274
doi: 10.1021/jp057585+
|
36 |
O'Brien R N, Santhanam K S V. Electrochemical hydrodynamics in magnetic fields with laser interferometry: influence of paramagnetic ions [J]. J. Appl. Electrochem., 1990, 20: 427
|
37 |
Waskaas M, Kharkats Y I. Effect of magnetic fields on convection in solutions containing paramagnetic ions [J]. J. Electroanal. Chem., 2001, 502: 51
doi: 10.1016/S0022-0728(00)00528-3
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|