Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 384-390    DOI: 10.11902/1005.4537.2022.135
Current Issue | Archive | Adv Search |
Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel
ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(3642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dissolution and precipitation behavior of the second phase and corrosion resistance of S31254-Ce super austenitic stainless steel after solid solution and aging treatment were studied by scanning electron microscope (SEM) and electrochemical test. The results show that the precipitates in S31254-Ce stainless steel can be completely redissolved after heated at 1250 ℃ for 120 min. After aged at 800-900 ℃, particulates of second phase were precipitated in S31254-Ce stainless steel preferentially along grain boundaries. With the increase of aging temperature up to above 840 ℃, the particulates gradually precipitated within the grain, and the number of precipitates gradually increases. During the aging treatment at 860 ℃, with the extension of aging time, the size of the fine dot-like precipitates within the grain gradually increased, and the intragranular precipitates gradually formed a network-like morphology. S31254-Ce has the best corrosion resistance after solid solution treatment. With the increased of aging temperature, the number of precipitates of S31254-Ce stainless steel increased and therewith the corrosion resistance of the steel decreased. After aging at 840-900 ℃, the degree of the corrosion resistance deterioration of S31254-Ce stainless steel increased.

Key words:  S31254 stainless steel      Ce      aging treatment      precipitate      corrosion resistance     
Received:  05 May 2022      32134.14.1005.4537.2022.135
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871159)
About author:  HAN Peide, E-mail: hanpeide@tyut.edu.cn

Cite this article: 

ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 384-390.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.135     OR     https://www.jcscp.org/EN/Y2023/V43/I2/384

Fig.1  As rolled microstructure of S31254-Ce stainless steel: (a) low image, (b) high image
Fig.2  Microstructure of S31254-Ce stainless steel after solution treatment at 1250 ℃ for 60 min (a), 120 min (b) and 180 min (c)
Fig.3  Microstructure of S31254-Ce stainless steel treated at 800 ℃ (a), 820 ℃ (b), 840 ℃ (c), 860 ℃ (d), 880 ℃ (e) and 900 ℃ (f) aging temperatures for 90 min
Fig.4  Microstructure of S31254-Ce stainless steel treated at 860 ℃ for 30 min (a), 60 min (b), 90 min (c) and 120 min (d)
Fig.5  Morphology (a) and EDS analysis (b, c) of S31254-Ce stainless steel aged at 860 ℃ for 120 min
Fig.6  Potentiodynamic polarization curves (a) and Icorr value change of S31254-Ce stainless steel solution treated and aged at different aging temperatures for 90 min (b)
Temperature / ℃Icorr / 107 A·cm-2Ecorr / VIp / 105 A·cm-2Epit / V
Solution treatment2.11±0.055-0.1486.221.137
8002.14±0.036-0.1496.311.104
8203.25±0.083-0.1828.441.097
8405.06±0.074-0.24914.371.059
8609.39±0.078-0.37327.541.038
88012.42±0.063-0.46335.551.021
90013.18±0.083-0.53452.141.011
Table 1  Electrochemical parameters of potentiodynamic polarization for S31254-Ce stainless steel solution treated and aged at different aging temperatures for 90 min
Fig.7  Nyquist (a) and Bode (b) plots and EIS equivalent circuit diagram (c) of S31254-Ce stainless steelsolution treated and aged at different aging temperatures for 90 min
Temperature / ℃Rs / Ω·cm2Rct / Ω·cm2Qct / 10-5 Ω-1·cm-1s-1nctRf / kΩ·cm2Qf / 10-5 Ω-1·cm-1s-1nf
Solution treatment10.412138.777.180.89344.615.040.88
80010.572057.567.240.89332.855.180.90
82010.531935.787.700.89319.595.640.91
84010.381781.438.380.90249.817.270.89
86010.321149.749.049.91131.268.350.90
88010.61796.239.770.83104.729.260.88
90010.86520.6510.060.8585.779.920.87
Table 2  Equivalent circuit fitting results of S31254-Ce stainless steel treated at different aging temperatures for 90 min
[1] Wang J, Cui Y S, Bai J G, et al. Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steels after solid solution treatment [J]. Mater. Lett., 2019, 252: 60
doi: 10.1016/j.matlet.2019.05.107
[2] Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
doi: 10.1016/j.matchar.2019.04.010
[3] Li J C, Liang W, Wu M, et al. Microstructure evolution in the segregation area of S31254 stainless steel plate [J]. Mater. Today Proc., 2015, 2: S319
[4] Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
doi: 10.1016/j.matchar.2018.01.040
[5] Bai J G, Cui Y S, Wang J, et al. Effect of boron addition on the precipitation behavior of S31254 [J]. Metals, 2018, 8: 497
doi: 10.3390/met8070497
[6] Li J G, Zhang C L, Xu L, et al. Effects of B on the segregation of Mo at the Fe-Cr-NiΣ5 (210) grain boundary [J]. Physica, 2019, 568B: 25
[7] Zhang S C, Li H B, Jiang Z H, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2020, 42: 143
doi: 10.1016/j.jmst.2019.10.011
[8] Li B B, Qu H P, Lang Y P, et al. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels [J]. Corros. Sci., 2020, 173: 108791
doi: 10.1016/j.corsci.2020.108791
[9] Askarian M, Peikari M, Javadpour S, et al. The effect of cerium solutions on 316L stainless steel [J]. WIT Trans. Eng. Sci., 2009, 64: 249
[10] Zhang S C, Yu J T, Li H B, et al. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102: 105
doi: 10.1016/j.jmst.2021.06.033
[11] Wang Q, Wang L J, Zhang W, et al. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel [J]. Metall. Mater. Trans., 2020, 51B: 1773
[12] Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., 2013, 573A: 27
[13] Wang T H, Wang J, Bai J G, et al. Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution [J]. J. Iron Steel Res. Int., 2022, 29: 1012
doi: 10.1007/s42243-021-00693-0
[14] Chen X D, Li Y S, Zhu Y T, et al. Enhanced irradiation and corrosion resistance of 316LN stainless steel with high densities of dislocations and twins [J]. J. Nucl. Mater., 2019, 517: 234
doi: 10.1016/j.jnucmat.2019.02.016
[15] Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
(张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143)
[16] Cui Y S, Qurashi M S, Wang J, et al. Effect of solution treatment on the microstructure and performance of S31254 super austenitic stainless steel [J]. Steel Res. Int., 2019, 90: 1900041
doi: 10.1002/srin.201900041
[17] Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
(盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646)
[18] Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
doi: 10.1016/j.electacta.2011.07.072
[19] Boissy C, Ter-Ovanessian B, Mary N, et al. Correlation between predictive and descriptive models to characterize the passive film-Study of pure chromium by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2015, 174: 430
doi: 10.1016/j.electacta.2015.05.179
[20] Zhao Y, Xiong H, Li X P, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
doi: 10.1016/j.corcom.2021.09.002
[21] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
[22] Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
(达波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260)
[23] Chen A Y, Hu W F, Wang D, et al. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure [J]. Scr. Mater., 2017, 130: 264
doi: 10.1016/j.scriptamat.2016.11.032
[1] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] HE Binbin, HOU Yu, WU Zixuan, LI Zili, LI Tao, YAN Jianwei. Influence of Inner Diameter of Nozzle on Stress State of Horizontal Reactor Nozzle[J]. 中国腐蚀与防护学报, 2023, 43(6): 1399-1406.
[4] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[5] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[6] WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[7] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[8] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[9] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[10] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[11] LIU Jing, CHEN Xuandong, YU Aiping, GONG Xinzhi. Multi-phase Mesoscopic Numerical Simulation of Chloride Ion Diffusion in Recycled Aggregate Concrete[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[12] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[13] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[14] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[15] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
No Suggested Reading articles found!