Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1274-1284    DOI: 10.11902/1005.4537.2023.379
Current Issue | Archive | Adv Search |
Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy
YIN Jie1, GAO Yonghao1(), YI Fang2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Hunan Xiangya Stomatological Hospital, Central South University, Changsha 410000, China
Cite this article: 

YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1274-1284.

Download:  HTML  PDF(13992KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Ag micro-alloying on the microstructure and corrosion behavior of the as-casted Mg-2Zn-0.2Ca (ZX20) alloy were investigated by means of OM, SEM, electrochemical tests, and hydrogen evolution mass loss method. The results reveal that the addition of 0.5% (mass fraction) Ag affects adversely the corrosion resistance of ZX20 alloy. The corrosion rate increases from 1.63 ± 0.17 mm/a for the ZX20 alloy to 4.06 ± 0.68 mm/a for the Ag-containing alloy (ZXQ200), primarily due to the potential difference between the second phase and the matrix. The dendrite arm spacing of the ZX20 alloy (69.8 ± 24.9 μm) is smaller than that of the ZXQ200 alloy (85.9 ± 23.9 μm), potentially contributing to the greater local corrosion depth observed in the ZXQ200 alloy. The two alloys all consist of α-Mg and Ca2Mg6Zn3 phases with a similar volume fraction of the second phase, and no Ag-rich compounds have been detected for the Ag-alloyed ones. However, the Ag segregation in the second phase results in a heightened potential difference between the second phase and the substrate, elevating it from approximately 60 mV (ZX20) to about 200 mV (ZXQ200). This segregation enhances the micro-galvanic corrosion driving force in the ZXQ200 alloy, resulting in a shorter pitting gestation period and an increase in local corrosion sites.

Key words:  Mg-alloy      Ag      second phase      micro-galvanic corrosion     
Received:  28 November 2023      32134.14.1005.4537.2023.379
ZTFLH:  T146.2  
Fund: Natural Science Foundation of Hunan Province(2023JJ30673)
Corresponding Authors:  GAO Yonghao, E-mail: yonghao.gao@outlook.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.379     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1274

AlloyAlloying elementImpurity element
MgZnCaAgFeCuNiSi
ZX20Bal.2.000.20-0.01100.00130.00080.0110
ZXQ200Bal.2.040.170.500.00910.00060.00270.0092
Table 1  Chemical composition of experimental alloys
Fig.1  Vertical section of quaternary phase diagram of Mg-2Zn-0.2Ca-xAg alloys (a) and XRD patterns of the as-casted samples (b)
Fig.2  OM (a, b) and SEM (c, d) images of ZX20 (a, c) and ZXQ200 (b, d) alloys
AlloyPointMgZnCaAg
ZX20184.511.34.2-
284.911.83.3-
ZXQ200373.618.15.62.7
477.115.75.31.9
Table 2  EDS results of the marked points in Fig.2
Fig.3  EPMA images of ZX20 (a) and ZXQ200 (b) alloys
Fig.4  Variations of hydrogen evolution (a) and hydrogen evolution rate (b) vs time of ZX20 and ZXQ200 alloys immersed in saline solution at 37 ± 1oC
Fig.5  Open circuit potential (a), cathodic (b) and anodic (c) potentio-dynamic polarization curves of ZX20 and ZXQ200 alloys
Alloy

Ecorr

V vs SCE

Icorr

μA·cm-2

βc

mV

Pi

mm·a-1

ZX20-1.6459.40-226.781.36
ZXQ200-1.61172.00-261.173.93
Table 3  Fitting results of cathodic potentio-dynamic polarization curves
Fig.6  Nyquist (a, b) and Bode (c) plots of ZX20 (a, c) and ZXQ200 (b, c) alloys after immersion in saline solution at 37 ± 1oC for 1 h
Alloy

Rs

Ω·cm2

Rct

Ω·cm2

CPEct-T

μΩ-1·cm-2·s n

n1

Rf

Ω·cm2

CPEf-T

μΩ-1·cm-2·s n

n2

RL1

Ω·cm2

L1

H·cm2

RL2

Ω·cm2

L2

H·cm2

χ2
ZX208.21053.017.10.911194.0911.10.7812672.0157640.0--0.0052
ZXQ2005.1262.721.40.89---336.7586.410396.6450.088
Table 4  Fitting results of EIS data for ZX20 and ZXQ200 alloys
Fig.7  Optical micrographs showing the macroscopic surfaces of ZX20 and ZXQ200 alloys after immersion in saline solution at 37 ± 1oC for various time (a) and responding curves of corroded area evolution (b)
Fig.8  SEM images of ZX20 (a-c) and ZXQ200 (d-f) alloys with (a, b, d, e) and without (c, f) corrosion products after immersion in saline solution at 37 ± 1oC for 30 min
Fig.9  Cross-section images of ZX20 (a) and ZXQ200 (b) alloys after immersion in saline solution at 37±1℃ for 5 d
Fig.10  SKPFM images (a, b) and responding potential curves (c, d) of ZX20 (a, c) and ZXQ200 (b, d) alloys
1 Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects [J]. J. Magnes. Alloys, 2022, 10: 627
2 Kumar R, Katyal P. Effects of alloying elements on performance of biodegradable magnesium alloy [J]. Mater. Today: Proc., 2022, 56: 2443
3 Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review [J]. Biomaterials, 2006, 27: 1728
doi: 10.1016/j.biomaterials.2005.10.003 pmid: 16246414
4 Yuan G Y, Zhang J, Ding W J. Research progress of Mg-based alloys as degradable biomedical materials [J]. Mater. China, 2011, 30(2): 44
袁广银, 张 佳, 丁文江. 可降解医用镁基生物材料的研究进展 [J]. 中国材料进展, 2011, 30(2): 44
5 Tan Z G, Zhou Q, Jiang Y G. Biodegradable magnesium alloy stents: disadvantages and research trends [J]. Chin. J. Tissue Eng. Res., 2015, 19: 1284
谭志刚, 周 倩, 蒋宇钢. 生物可降解镁合金血管支架: 缺点及未来研究趋势 [J]. 中国组织工程研究, 2015, 19: 1284
6 Duygulu O, Kaya R A, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as a bone implant [J]. Mater. Sci. Forum, 2007, 546-549: 421
7 Feyerabend F, Fischer J, Holtz J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines [J]. Acta Biomater., 2010, 6: 1834
doi: 10.1016/j.actbio.2009.09.024 pmid: 19800429
8 Lu Y, Bradshaw A R, Chiu Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng., 2015, 48C: 480
9 Ma Y Z, Yang C L, Liu Y J, et al. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys [J]. Int. J. Miner. Metall. Mater., 2019, 26: 1274
10 Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn–Ca alloys [J]. Acta Mater., 2022, 239: 118223
11 Zander D, Zumdick N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys [J]. Corros. Sci., 2015, 93: 222
12 Zareian Z, Emamy M, Malekan M, et al. Tailoring the mechanical properties of Mg-Zn magnesium alloy by calcium addition and hot extrusion process [J]. Mater. Sci. Eng., 2022, 774A: 138929
13 Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloy. Compd., 2020, 849: 156640
14 Zhang Y N, Kevorkov D, Li J, et al. Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca-Mg-Zn system [J]. Intermetallics, 2010, 18: 2404
15 Xing R, Yang X Y, Li A Y. Research on corrosion and mechanical properties of Mg-Zn-Ca magnesium alloy for medical application [J]. New Technol. New Process, 2020, (2): 6
邢 蕊, 杨晓宇, 李安阳. 医用Mg-Zn-Ca镁合金的腐蚀与力学性能研究 [J]. 新技术新工艺, 2020, (2): 6
16 Qian J Q. Study on the corrosion behavior of Mg-Al-Ca-Zn magnesium alloy in NaCl solution [D]. Changsha: Hunan University, 2020
钱嘉琦. Mg-Al-Ca-Zn镁合金在NaCl溶液中腐蚀行为研究 [D]. 长沙: 湖南大学, 2020
17 Davidović S, Lazić V, Miljković M, et al. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions [J]. Carbohydr. Polym., 2019, 224: 115187
18 Lagashetty A, Pattar A, Ganiger S K. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite [J]. Heliyon, 2019, 5: e01760
19 Ramya M, Ravi K R. Biodegradable nanocrystalline Mg-Zn-Ca-Ag alloys as suitable materials for orthopedic implants [J]. Mater. Today: Proc., 2022, 58: 721
20 Yu L T, Zhao Z H, Tang C K, et al. The mechanical and corrosion resistance of Mg-Zn-Ca-Ag alloys: The influence of Ag content [J]. J. Mater. Res. Technol., 2020, 9: 10863
21 Ben-Hamu G, Eliezer D, Shin K S. Influence of Si, Ca and Ag addition on corrosion behaviour of new wrought Mg-Zn alloys [J]. Mater. Sci. Technol., 2006, 22: 1213
22 Yang L Z, Feng Y, He Y Q, et al. Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3Ca biodegradable alloy [J]. J. Alloy. Compd., 2022, 907: 164533
23 Wang L, Feng Y C, Guo E J, et al. The corrosion characteristic of Mg-3Nd alloy without and with Al addition [J]. Mater. Res. Express, 2018, 5: 066513
24 Li Y J, Li M X, Hua Z M, et al. Role of alloyed Al on the microstructure and corrosion behavior of as-cast dilute Mg-2Zn-xAl-0.5Ca alloys [J]. Corros. Sci., 2023, 211: 110861
25 Wang B Y, Li M X, Li Y J, et al. Effect of Al/Mn ratio on corrosion behavior of lean Mg-Zn-Ca-Al-Mn alloy processed by twin-roll casting [J]. Corros. Sci., 2023, 212: 110938
26 Li Z. Study on the corrosion behavior of ZK60 magnesium alloys and methods to improve its anti-corrosion performance [D]. Wuhan: Huazhong University of Science & Technology, 2023
李 振. ZK60镁合金腐蚀行为及其耐蚀性改善方法研究 [D]. 武汉: 华中科技大学, 2023
27 Yin S Q, Duan W C, Liu W H, et al. Improving the corrosion resistance of MgZn1.2Gd x Zr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions [J]. Corros. Sci., 2020, 177: 108962
28 Ma K, Wang J F, Zheng W X, et al. The effect of solute segregated stacking faults on the corrosion behavior of Mg-Gd-Cu alloys [J]. Corros. Sci., 2022, 208: 110689
29 Song G L. Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2006
宋光铃. 镁合金腐蚀与防护 [M]. 北京: 化学工业出版社, 2006
30 Duan G Q, Yang L X, Liao S J, et al. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy [J]. Corros. Sci., 2018, 135: 197
31 Xu S Y, Jiang S N, Chen Z Y, et al. Influence of corrosion morphology on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloy [J]. J. Mater. Eng. Perform., 2021, 30: 4126
32 Yang M. Study on the corrosion and mechanical properties of AM50 magnesium alloy [D]. Changchun: Jilin University, 2014
杨 淼. AM50镁合金腐蚀力学性能研究 [D]. 长春: 吉林大学, 2014
33 Fan Z M, Yu J, Song Y W, et al. Research progress of pitting corrosion of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 317
樊志民, 于 锦, 宋影伟 等. 镁合金点蚀的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 317
doi: 10.11902/1005.4537.2017.120
34 Feng X W, Qi W J, Li X H, et al. Microstructure and electrochemical corrosion properties of biomedical extruded Mg-Zn-Gd alloys [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 267
冯晓伟, 戚文军, 黎小辉 等. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能 [J]. 中国腐蚀与防护学报, 2016, 36: 267
doi: 10.11902/1005.4537.2015.050
35 Feng Y F, Song Y Q, An Y. Microstructure and corrosion resistance of Mg-Zn-Mn alloy as-cast [J]. Heat Treat. Met., 2016, 41(10): 29
冯宇飞, 宋义全, 安 玥. Mg-Zn-Mn合金的铸态组织及耐腐蚀性 [J]. 金属热处理, 2016, 41(10): 29
36 Wang X G, Liu T, Li W L, et al. Effects of Cu and Ni elements on the microstructure and degradation properties of Mg-4Zn alloy [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 536
王小刚, 刘 涛, 李伟莉 等. Cu、Ni元素对Mg-4Zn合金显微组织及降解性能的影响 [J]. 特种铸造及有色合金, 2023, 43: 536
doi: 10.15980/j.tzzz.2023.04.020
37 Deng Z C, Sun J L, Hou L F, et al. Research on the influence of In content on corrosion behavior of Mg-In binary alloys [J]. J. Funct. Mater., 2022, 53: 12121
doi: 10.3969/j.issn.1001-9731.2022.12.016
邓志超, 孙俊丽, 侯利锋 等. In含量对Mg-In二元合金腐蚀行为的影响研究 [J]. 功能材料, 2022, 53: 12121
doi: 10.3969/j.issn.1001-9731.2022.12.016
38 Wang Z Y, Xu Y Z, Li J Y. Effects of trace Nd on microstructure, mechanical properties and corrosion resistance of Mg-2Zn-0.2Sr-0.6Zr-xNd biomaterials [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1238
王祯寅, 徐玉召, 李静媛. 微量Nd对Mg-2Zn-0.2Sr-0.6Zr-xNd医用镁合金组织和性能的影响 [J]. 特种铸造及有色合金, 2021, 41: 1238
doi: 10.15980/j.tzzz.2021.10.012
[1] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[3] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[4] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[5] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[6] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[7] ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[8] WANG Bo, AN Shizhong, GUO Junqing, JI Yunguang, LI Zhiqiang. Electrochemical Performance of Commercial MB1 and MB8 Mg-alloys in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[9] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[10] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[11] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[12] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[13] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[14] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[15] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
No Suggested Reading articles found!