Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 601-611    DOI: 10.11902/1005.4537.2023.234
Current Issue | Archive | Adv Search |
Inhibition Action of Machilus yunnanensis Leaves Extract on Corrosion of Al-plate in HCl Medium
WEI Gaofei, DENG Shuduan, SHAO Dandan, XU Juan, LI Xianghong()
Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Cite this article: 

WEI Gaofei, DENG Shuduan, SHAO Dandan, XU Juan, LI Xianghong. Inhibition Action of Machilus yunnanensis Leaves Extract on Corrosion of Al-plate in HCl Medium. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 601-611.

Download:  HTML  PDF(8945KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition action of Machilus yunnanensis leaves extract (MYLE) on Al-plate in 1.0 mol·L-1 HCl solution were studied by means of mass loss method, electrochemical tests, inductively coupled plasma optical emission spectrometer (ICP-OES), metallographic microscope, scanning electron microscope (SEM) and contact angle measurements. The results show that the maximum inhibition efficiency of 1000 mg·L-1 MYLE at 20oC can reach as high as 93.5%. The inhibition efficiency increases with the increase of MYLE concentration, while the higher the temperature, the weaker the inhibition performance. The adsorption of MYLE on Al surface is mainly based on chemisorption, which conforms to Langmuir isotherm at lower temperatures and Freundlich isotherm at higher temperatures. The corrosion kinetic reaction of Al in HCl solutions without or with MYLE is in accordance with Arrhenius formula and transition state theory equation. In the presence of MYLE, the relevant apparent activation energy (Ea), pre-exponential factor (A), apparent activation enthalpy (ΔHa) and apparent activation entropy (ΔSa) are all increased. MYLE is a mixed inhibitor through “geometric blocking effect”. Nyquist diagram is mainly composed of a capacitive reactance arc in high frequency region and an inductive reactance arc in low frequency region. With the increase of MYLE concentration, both the charge transfer resistance and inductance resistance increase. After the addition of MYLE, the concentration of Al3+ in HCl solutions is significantly dropped, and SEM morphology further confirms that MYLE can efficiently slow down the corrosion degree of Al-plate.

Key words:  Machilus yunnanensis leaves      HCl      inhibition      adsorption      Al     
Received:  27 July 2023      32134.14.1005.4537.2023.234
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52161016);Fundamental Research Project for Postgraduates in Yunnan Provincial Department of Education(2022Y566);Research Project for Distinguished Young Scholars in Yunnan Province(202001AV07-0008);Joint Key Project of Agricultural Fundamental Research in Yunnan Province(202101BD070001-017);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109)
Corresponding Authors:  LI Xianghong, E-mail: xianghong-li@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.234     OR     https://www.jcscp.org/EN/Y2024/V44/I3/601

Fig.1  Extraction flow diagram of MYLE
Fig.2  Surface morphologies of Al samples before (a) and after immersion in 1.0 mol·L-1 HCl (b) and 1.0 mol·L-1 HCl + 1000 mg·L-1 MYLE (c)
Fig.3  Variations of corrosion rate (a) and inhibition efficiency (b) with MYLE concentration for Al in 1.0 mol·L-1 HCl
Fig.4  Adsorption isotherms of MYLE on Al surface in HCl solution at different temperatures: (a) Langmuir, (b) Freundlich
T / ℃r2SlopeInterceptnK / L·mg-1
200.99871.0074.22-0.0135
250.99860.93175.84-0.0057
300.97680.87-6.700.870.0012
350.98500.84-7.410.840.0006
Table 1  Linear regression parameters and adsorption equi librium constant
Fig.5  Fitted straight line of lnK versus 1/T in 1.0 mol·L-1 HCl
T / oC

ΔHθ

kJ·mol-1

ΔGθ

kJ·mol-1

ΔSθ

J·mol-1·K-1

20-163.07-23.17-477.2
25-21.43-475.1
30-17.93-478.8
35-16.40-476.0
  
Fig.6  Fitted straight lines: (a) lnv-1/T, (b) ln(v/T)-1/T
Fig.7  Variation curves of corrosion kinetic parameters with MYLE concentration in 1.0 mol·L-1 HCl
Fig.8  PDP curves for Al in 1.0 mol·L-1 HCl solutions without and with different concentrations of MYLE at 20oC

c

mg·L-1

Ecorr

mV vs SCE

Icorr

μA·cm-2

-bc

mV·dec-1

ba

mV·dec-1

ηP
0-783521928118-
100-79411641651777.7%
500-7919821621881.2%
1000-7884201341592.0%
Table 3  PDP parameters of Al in 1.0 mol·L-1 HCl solutions containing different concentrations of MYLE at 20oC
Fig.9  Nyquist plots (a), R(QR(LR)) fitting circuit diagrams (b), Bode phase angles (c) and Bode moduli (d) of Al in 1.0 mol·L-1 HCl solutions containing different concentrations of MYLE at 20oC

c

mg·L-1

Rs

Ω·cm2

Rt

Ω·cm2

RL

Ω·cm2

Rp

Ω·cm2

L

H·cm2

Q

Ω·s n ·cm-2

n

χ2

10-2

ηR
01.28.40.30.292.7850.04670.93220.8-
1001.214.41.41.285.4380.05590.91680.677.3%
5001.326.72.82.5311.440.03900.92900.588.5%
10001.238.64.43.9516.170.05910.89441.792.7%
Table 4  EIS parameters of Al in 1.0 mol·L-1 HCl solutions containing different concentrations of MYLE at 20oC
Fig.10  SEM surface morphologies (a-c) and contact angles (d) of Al before (a) and after immersion for 2 h in the solutions of 1.0 mol·L-1 HCl (b) and 1.0 mol·L-1 HCl + 1000 mg·L-1 MYLE (c)
Fig.11  Variations of Al3+ concentration and corrosion inhibition with MYLE concentration
Fig.12  Schematic diagrams of corrosion mechanism (a) and inhibition mechanism (b)
1 Liu Y X, Wen J X. Research progress on corrosion inhibition of green corrosion inhibitors for aluminium metals [J]. Guangzhou Chem. Ind., 2019, 47(12): 27
刘云霞, 文家新. 绿色缓蚀剂对金属铝的缓蚀性能研究进展 [J]. 广州化工, 2019, 47(12): 27
2 Zhang F, Xu X, Lei R, et al. Inhibition effect of orange peel extract on aluminum in hydrochloric acid solution [J]. J. Southwest For. Univ., 2022, 42(2): 103
张 富, 徐 昕, 雷 然 等. 橙子皮提取物对HCl溶液中铝的缓蚀作用研究 [J]. 西南林业大学学报, 2022, 42(2): 103
3 Kendig M W, Buchheit R G. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings [J]. Corrosion, 2003, 59: 379
doi: 10.5006/1.3277570
4 Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: a short view [J]. Chem. Eng. Commun., 2016, 203: 1145
doi: 10.1080/00986445.2016.1172485
5 Chaubey N, Savita, Qurashi A, et al. Frontiers and advances in green and sustainable inhibitors for corrosion applications: a critical review [J]. J. Mol. Liq., 2021, 321: 114385
doi: 10.1016/j.molliq.2020.114385
6 Mo S, Luo H Q, Li N B. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid [J]. Chem. Pap., 2016, 70: 1131
7 Xu W T, Dong Q L, He Y L, et al. Corrosion inhibition effect of the rape leaf extract on metal aluminum [J]. J. Jilin Agric. Sci. Technol. Univ., 2023, 32(3): 5
许雯婷, 董清丽, 何玉兰 等. 油菜叶提取物对金属铝的缓蚀作用 [J]. 吉林农业科技学院学报, 2023, 32(3): 5
8 Sahraoui M, Boulkroune M, Chibani A, et al. Aqueous extract of Punica granatum fruit peel as an eco-friendly corrosion inhibitor for aluminium alloy in acidic medium [J]. J. Bio- Tribo-Corros., 2022, 8: 54
9 Hatem O A. Computational and experimental evaluation of inhibition potential of a new ecologically friendly inhibitor leaves of date palm (Phoenix dactylifera L.) for aluminium corrosion in an acidic media [J]. Int. J. Corros., 2022, 2022: 5953561
10 Fouda A E A S, Haleem E A. Tussilago farfara extract (TFE) as green corrosion inhibitor for aluminum in hydrochloric acid solution [J]. Biointerface Res. Appl. Chem., 2020, 10: 7023
doi: 10.33263/BRIAC
11 Meena O P, Nainawat A K, Chaturvedi A. Corrosion inhibition of aluminium by alkaloid extract of aerial part of Euphorbia neriifolia linn in HCl solutions [J]. Int. J. ChemTech Res., 2019, 12: 234
doi: 10.20902/CT
12 Bashir S, Singh G, Kumar A. Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium [J]. J. Mater. Environ. Sci., 2017, 8: 4284
13 Khadraoui A, Khelifa A, Hachama K, et al. Thymus algeriensis extract as a new eco-friendly corrosion inhibitor for 2024 aluminium alloy in 1 M HCl medium [J]. J. Mol. Liq., 2016, 214: 293
doi: 10.1016/j.molliq.2015.12.064
14 Alrefaee S H, Rhee K Y, Verma C, et al. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: recent advancements [J]. J. Mol. Liq., 2021, 321: 114666
doi: 10.1016/j.molliq.2020.114666
15 Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaf extract on the corrosion of aluminum in HCl solution [J]. Acta Phys. -Chim. Sin., 2014, 30: 1883
doi: 10.3866/PKU.WHXB201407161
李向红, 邓书端, 谢小光 等. 竹叶提取物对铝在HCl溶液中的缓蚀作用(英文) [J]. 物理化学学报, 2014, 30: 1883
16 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on aluminum in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
黄 苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 471
17 Lei R, Shi C J, Li S M, et al. Corrosion inhibition of aluminium in HCl solution by buckwheat extract [J]. Appl. Chem. Ind., 2022, 51: 1272
雷 然, 石成杰, 黎世美 等. 荞麦提取物对铝在HCl溶液中的缓蚀作用 [J]. 应用化工, 2022, 51: 1272
18 Deng S D, Li X H, Fu H, et al. Corrosion inhibition of machilus yunnanensis leaves extract for steel in H2SO4 solution [J]. Corros. Prot., 2011, 32: 359
邓书端, 李向红, 付 惠 等. 滇润楠叶提取物在H2SO4中对钢的缓蚀作用 [J]. 腐蚀与防护, 2011, 32: 359
19 Deng S D, Li X H, Fu H, et al. Corrosion inhibition of machilus yunnanensis leaves extractive for steel in H3PO4 [J]. Total Corros. Control, 2010, 24(12): 5
邓书端, 李向红, 付 惠 等. 滇润楠叶提取物在H3PO4中对钢的缓蚀性能研究 [J]. 全面腐蚀控制, 2010, 24(12): 5
20 Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. [J]. J. Am. Chem. Soc., 1916, 38: 2221
doi: 10.1021/ja02268a002
21 Haring M M. Colloid and capillary chemistry (Freundlich, Herbert) [J]. J. Chem. Educ., 1926, 3: 1454
22 Lu L, Na C Z. Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution [J]. Philos. Mag. Lett., 2022, 102: 239
doi: 10.1080/09500839.2022.2084571
23 Subbiah K, Lee H S, Mandal S, et al. Conifer Cone (Pinus resinosa) as a green corrosion inhibitor for steel rebar in chloride-contaminated synthetic concrete pore solutions [J]. ACS Appl. Mater. Interfaces, 2021, 13: 43676
doi: 10.1021/acsami.1c11994
24 Tan B C, Xiang B, Zhang S T, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium [J]. J. Colloid Interface Sci., 2021, 582: 918
doi: 10.1016/j.jcis.2020.08.093
25 Xu B, Yang W Z, Liu Y, et al. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2014, 78: 260
doi: 10.1016/j.corsci.2013.10.007
26 Wei G F, Lei R, Li X H. Inhibition action of hexadecylpyridinium bromide on cold rolled steel in Cl3CCOOH solution [J]. Chem. Res. Appl., 2022, 34: 1994
魏高飞, 雷 然, 李向红. 溴代十六烷基吡啶对冷轧钢在三氯乙酸中的缓蚀性能 [J]. 化学研究与应用, 2022, 34: 1994
27 Wei G F, Deng S D, Li X H. Eupatorium Adenophora (Spreng.) leaves extract as a highly efficient eco-friendly inhibitor for steel corrosion in trichloroacetic acid solution [J]. Int. J. Electrochem. Sci., 2022, 17: 221182
doi: 10.20964/2022.11.63
28 Emranuzzaman, Kumar T, Vishwanatham S, et al. Synergistic effects of formaldehyde and alcoholic extract of plant leaves for protection of N80 steel in 15%HCl [J]. Corros. Eng. Sci. Technol., 2004, 39: 327
doi: 10.1179/174327804X13181
29 Wan S, Zhang T, Chen H K, et al. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium [J]. Ind. Crops Prod., 2022, 178: 114649
doi: 10.1016/j.indcrop.2022.114649
30 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
doi: 10.1016/S0010-938X(96)00034-0
31 Huang M, Wang L Z, Li X H. Adsorption and inhibition of sodium dodecyl sulfate on aluminum surface in hydrochloric acid [J]. Chem. Res. Appl., 2020, 32: 1587
黄 苗, 王丽姿, 李向红. 盐酸中十二烷基硫酸钠在铝表面的吸附及缓蚀性能 [J]. 化学研究与应用, 2020, 32: 1587
32 Lei R, Shi C J, Li X H. Corrosion inhibition of aluminum in HCl solution by Flos sophorae immaturus extract [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 939
雷 然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2022, 42: 939
33 Chen W, Huang D X, Wei F. Inhibition effect of Brainea insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
陈 文, 黄德兴, 韦 奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376
34 Deng S D, Li X H, Du G B. An efficient corrosion inhibitor of cassava starch graft copolymer for aluminum in phosphoric acid [J]. Chin. J. Chem. Eng., 2021, 37: 222
doi: 10.1016/j.cjche.2020.08.013
35 Zheng T Y, Liu J Y, Wang M H, et al. Synergistic corrosion inhibition effects of quaternary ammonium salt cationic surfactants and thiourea on Q235 steel in sulfuric acid: experimental and theoretical research [J]. Corros. Sci., 2022, 199: 110199
doi: 10.1016/j.corsci.2022.110199
36 Deng Z H, Lei R, Zhang Z Y, et al. Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
37 Zhou Y. Studies on the chemical constituents of two lauraceae medicinal plants [D]. Kunming: Yunnan University, 2011
周 娅. 两种滇产樟科药用植物的化学成分研究 [D]. 昆明: 云南大学, 2011
38 Deng S D, Li X H, Fu H, et al. Study on corrosion inhibition of Machilus yunnanensis lec leaves extracts for steel in hydrochloric acid [J]. Chem. Ind. For. Prod., 2009, 29(suppl.1) : 117
邓书端, 李向红, 付 惠 等. 滇润楠叶提取物在盐酸中对钢的缓蚀性能研究 [J]. 林产化学与工业, 2009, 29(): 117
[1] LI Gangqing, LIU Xi, SUN Xiaoguang, PAN Jinglong, CAO Xiangkang, DONG Zehua. Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[2] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[3] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[5] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[6] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[7] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[8] DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[9] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[10] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[11] FENG Likui, CHENG Yijie, SONG Xiaoning, YU Zhiyong, YAN Zixuan, ZHANG Daquan. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
[12] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[13] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[14] HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin. Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[15] PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
No Suggested Reading articles found!