Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 399-407    DOI: 10.11902/1005.4537.2022.138
Current Issue | Archive | Adv Search |
Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings
ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan(), CHEN Qiang(), ZHOU Qiong, HUANG Biao
Shanghai Engineering Technology Research Center of Physical Vapor Deposition (PVD) Superhard Coatings and Equipment, Shanghai University of Technology, Shanghai 201418, China
Download:  HTML  PDF(7139KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because of the advantages of high hardness and strength, superior thermal stability, good wear resistance, excellent corrosion resistance, outstanding soft magnetism, and low cost, Fe-based amorphous alloys exhibit a broad application prospect in many fields. However, the limited glass-forming ability and intrinsic plasticity greatly limit their application as engineering materials. Thereinto, Fe-based amorphous coatings prepared by thermal spraying technology can not only maintain their inherent characteristics but also avoid the aforementioned shortcomings, thus breaking through the limitation of engineering application. In this paper, the main preparation methods of Fe-based amorphous coatings by thermal spraying were comprehensively introduced, and the influencing factors of corrosion resistance, including the chemical composition, oxidation, pore, crystallization, and crack, were reviewed. Then, the methods to optimize the corrosion resistance of Fe-based amorphous coatings were summarized. Finally, the prospective research regarding the corrosion resistance of Fe-based amorphous coatings was proposed.

Key words:  amorphous coating      thermal spraying      microstructure      corrosion resistance     
Received:  06 May 2022      32134.14.1005.4537.2022.138
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51901138);National Natural Science Foundation of China(51971148);Program of Shanghai Technology Research Leader(22XD1434500);Research Fund for Talents Introduction(YJ2022-31);Shanghai Natural Science Foundation of China(20ZR1455700)
About author:  CHEN Qiang, E-mail: john_chen0826@163.com
LIANG Dandan, E-mail: liang.d.d@163.com

Cite this article: 

ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 399-407.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.138     OR     https://www.jcscp.org/EN/Y2023/V43/I2/399

ProcessPlasma sprayingElectric arc sprayingHigh velocity oxy-fuel
Heat sourcePlasma arcElectric arcCombustion flame
Temperature of the heat source / ℃>100004000-60002600-3000
Particle velocity / m·s-1≤450100-300≤1000
Spraying efficiency / kg·h-12-1010-281-9
Material shapePowderyFiliform、RibbonPowdery
Oxidation degree of coatingsMiddleMiddle-HighLow
Bonding strength / MPa14-6914-5040-83
Table 1  Process characteristics of three common thermal spraying methods[17,18]
Fig.1  Cross-sectional SEM image of arc-sprayed Fe-based amorphous coatings
Fig.2  Backscattered electron SEM image of the cross-sectional coating[23]
Fig.3  Schematic diagram of corrosion process of Fe base coatings: (a) obstructed mass transport process; (b) electrolyte diffusion oxide layer; (c) induce local corrosion; (d) localized corrosion to the substrate[35]
Fig.4  SEM morphologies (a, c) and the corresponding distribution maps of O (b, d) of the initial (a, b) and relaxed (c, d) amorphous coatings after corrosion[36]
Fig.5  Corroded surface morphology (a) and the corresponding EDS mapping of O (b), Fe (c) and Cr (d) of Fe-based amorphous coating after the potentiodynamic polarization tests[45]
Fig.6  Wettability angles of Fe-based amorphous coatings: (a) initial state and (b) relaxed state. The upper left is the AFM morphology of the corresponding sample[36]
Fig.7  Schematic diagram of solution treatment of Fe-based amorphous coating: (a) schematic diagram of defects; (b) onset of corrosion; (c) selective dissolution; (d) hole sealing treatment[54]
[1] Gao H, Wei X S, Liang D D, et al. Friction and wear properties of HVAF sprayed Fe-based amorphous alloy coatings [J]. Surf. Technol., 2018, 47(2): 55
(高涵, 魏先顺, 梁丹丹 等. 超音速火焰喷涂Fe基非晶合金涂层材料的摩擦磨损性能研究 [J]. 表面技术, 2018, 47(2): 55)
[2] Axinte E M, Chirileanu M P I. Recent progress in the industrialization of metallic glasses [J]. Recent Pat. Mater. Sci., 2012, 5: 213
[3] Zhu L, Jiang S S, Yang Z Z, et al. Magnetic properties of a Fe-based amorphous alloy with stress gradient [J]. J. Magn. Magn. Mater., 2021, 519: 167513
doi: 10.1016/j.jmmm.2020.167513
[4] Shen J, Chen Q, Sun J, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
doi: 10.1063/1.1897426
[5] Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
doi: 10.1179/1743280412Y.0000000007
[6] Zhang J, Feng Y P, Li Y. Bulk metallic glass formation, composite, and magnetic propertiesof Fe-B-Nd based alloys [J]. J. Mater. Res., 2009, 24: 357
doi: 10.1557/JMR.2009.0074
[7] Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
doi: 10.1016/j.jmrt.2020.01.024
[8] Hess P A, Poon S J, Shiflet G J, et al. Indentation fracture toughness of amorphous steel [J]. J. Mater. Res., 2005, 20: 783
doi: 10.1557/JMR.2005.0104
[9] Chen Q J, Fan H B, Ye L, et al. Enhanced glass forming ability of Fe-Co-Zr-Mo-W-B alloys with Ni addition [J]. Mater. Sci. Eng., 2005, 402A: 188
[10] Zhang Z F, Wu F F, Gao W, et al. Wavy cleavage fracture of bulk metallic glass [J]. Appl. Phys. Lett., 2006, 89: 251917
doi: 10.1063/1.2422895
[11] Chu J P, Huang J C, Jang J S C, et al. Thin film metallic glasses: preparations, properties, and applications [J]. JOM, 2010, 62: 19
doi: 10.1007/s11837-010-0053-3
[12] Li Z, Zhang C, Liu L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses [J]. J. Alloy. Compd., 2015, 650: 127
doi: 10.1016/j.jallcom.2015.07.256
[13] Jang J S C, Tsai P H, Shiao A Z, et al. Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film [J]. Intermetallics, 2015, 65: 56
doi: 10.1016/j.intermet.2015.06.012
[14] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
[15] Wang H J. Thermal Spraying Engineer's Guide [M]. Beijing: National Defense Industry Press, 2010
(王海军. 热喷涂工程师指南 [M]. 北京: 国防工业出版社, 2010)
[16] Siegmann S, Abert C. 100 years of thermal spray: about the inventor Max Ulrich Schoop [J]. Surf. Coat. Technol., 2013, 220: 3
doi: 10.1016/j.surfcoat.2012.10.034
[17] Wang H J. Thermal Spraying Materials and Application [M]. Beijing: National Defense Industry Press, 2008
(王海军. 热喷涂材料及应用 [M]. 北京: 国防工业出版社, 2008)
[18] Tan L M. Study on structure and properties of Fe-based amorphous wear resistant and anticorrosive coatings [D]. Shanghai: Shanghai University of Engineering Science, 2018
(谭礼明. 铁基非晶耐磨抗蚀涂层结构和性能研究 [D]. 上海: 上海工程技术大学, 2018)
[19] Yugeswaran S, Kobayashi A. Metallic glass coatings fabricated by gas tunnel type plasma spraying [J]. Vacuum, 2014, 110: 177
doi: 10.1016/j.vacuum.2014.04.016
[20] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying [J]. Surf. Coat. Technol., 2009, 204: 563
doi: 10.1016/j.surfcoat.2009.08.025
[21] Tian X L, Wang Z J, Hu Z X. Research progress on supersonic spray gun design and numerical simulation [J]. Trans. China Weld. Inst., 2002, 23(1): 93
(田欣利, 王志健, 胡仲翔. 超音速火焰喷枪设计理论与数值模拟的研究进展 [J]. 焊接学报, 2002, 23(1): 93)
[22] Han Z, Zhao H. Development of thermal spray─new type of high energy and high velocity spray [J]. J. Mater. Eng., 1996, 24(12): 3
(韩忠, 赵晖. 热喷涂发展趋势─新型高能高速喷涂方法 [J]. 材料工程, 1996, 24(12): 3)
[23] Liang D D, Ma J, Cai Y F, et al. Characterization and elevated-temperature tribological performance of AC-HVAF-sprayed Fe-based amorphous coating [J]. Surf. Coat. Technol., 2020, 387: 125535
doi: 10.1016/j.surfcoat.2020.125535
[24] Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
doi: 10.1016/j.corsci.2018.04.006
[25] Wang Z M, Ma Y T, Zhang J, et al. Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses [J]. Electrochim. Acta, 2008, 54: 261
doi: 10.1016/j.electacta.2008.08.017
[26] Wang Y, Jiang S L, Zheng Y G, et al. Effect of molybdenum, manganese and tungsten contents on the corrosion behavior and hardness of iron-based metallic glasses [J]. Mater. Corros., 2014, 65: 733
[27] Habazaki H, Kawashima A, Asami K, et al. Cheminform abstract: the effect of tungsten on the corrosion behavior of amorphous Fe-Cr-W-P-C alloys in 1 M HCl [J]. ChemInform, 1991, 134: 1033
[28] Liang D D, Wei X S, Chang C T, et al. Effects of W addition on the electrochemical behaviour and passive film properties of Fe-based amorphous alloys in acetic acid solution [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1098
doi: 10.1007/s40195-018-0791-8
[29] Burkov A A, Chigrin P G. Effect of tungsten, molybdenum, nickel and cobalt on the corrosion and wear performance of Fe-based metallic glass coatings [J]. Surf. Coat. Technol., 2018, 351: 68
doi: 10.1016/j.surfcoat.2018.07.078
[30] Zhang B S, Cheng J B, Liang X B. Effects of Cr and Mo additions on formation and mechanical properties of Arc-sprayed FeBSiNb-based glassy coatings [J]. J. Non-Cryst. Solids, 2018, 499: 245
doi: 10.1016/j.jnoncrysol.2018.07.035
[31] Huang B, Zhang C, Zhang G, et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review [J]. Surf. Coat. Technol., 2019, 377: 124896
doi: 10.1016/j.surfcoat.2019.124896
[32] Guo R Q, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF [J]. Corros. Sci., 2011, 53: 2351
doi: 10.1016/j.corsci.2010.12.022
[33] Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
doi: 10.1016/j.actamat.2012.04.005
[34] Wu J, Zhang S D, Sun W H, et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
doi: 10.1016/j.corsci.2018.03.005
[35] Wu J, Zhang S D, Sun W H, et al. Wang. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings [J]. Surf. Coat. Technol., 2018, 335: 205
doi: 10.1016/j.surfcoat.2017.12.038
[36] Liang D D, Liu X D, Zhou Y H, et al. Effects of annealing below glass transition temperature on the wettability and corrosion performance of Fe-based amorphous coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 243
doi: 10.1007/s40195-021-01228-y
[37] Wang D L, Ding H P, Ma Y F, et al. Research progress on corrosion resistance of metallic glasses [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 277
(王东亮, 丁华平, 马云飞 等. 非晶合金耐蚀性研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 277)
[38] Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS [J]. Appl. Surf. Sci., 2012, 258: 5380
doi: 10.1016/j.apsusc.2012.02.015
[39] Kim Y J, Jang J W, Lee D W, et al. Porosity effects of a Fe-based amorphous/nanocrystals coating prepared by a commercial high velocity oxy-fuel process on cavitation erosion behaviors [J]. Met. Mater. Int., 2015, 21: 673
doi: 10.1007/s12540-015-4580-x
[40] Zhang S D, Zhang W L, Wang S G, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
doi: 10.1016/j.corsci.2015.01.022
[41] Zhang S D, Wu J, Qi W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
doi: 10.1016/j.corsci.2016.04.021
[42] Nayak S K, Kumar A, Sarkar K, et al. Mechanistic insight into the role of amorphicity and porosity on determining the corrosion mitigation behavior of Fe-based amorphous/nanocrystalline coating [J]. J. Alloy. Compd., 2020, 849: 156624
doi: 10.1016/j.jallcom.2020.156624
[43] Lin J R, Wang Z H, Lin P H, et al. Effect of crystallisation on electrochemical properties of arc sprayed FeNiCrBSiNbW coatings [J]. Surf. Eng., 2014, 30: 683
doi: 10.1179/1743294414Y.0000000299
[44] Jiao J, Luo Q, Wang Y, et al. Influence of crystalline phases in powders on corrosion behavior of Fe-based amorphous coating [J]. Hot Work. Technol., 2018, 47: 88
(焦津, 罗强, 王勇 等. 粉末中的晶化相对铁基非晶涂层腐蚀行为的影响 [J]. 热加工工艺, 2018, 47: 88)
[45] Liang D D, Zhou Y H, Liu X D, et al. Wettability and corrosion performance of arc-sprayed Fe-based amorphous coatings [J]. Surf. Coat. Technol., 2022, 433: 128129
doi: 10.1016/j.surfcoat.2022.128129
[46] Cheng J B, Liang X B, Xu B S. Effects of crystallization on the corrosion resistance of arc-sprayed FeBSiNb coatings [J]. J. Therm. Spray Technol., 2014, 23: 373
doi: 10.1007/s11666-013-9990-z
[47] Kang Y H, Chen Y M, Wen Y X, et al. Effects of structural relaxation and crystallization on the corrosion resistance of an Fe-based amorphous coating [J]. J. Non-Cryst. Solids, 2020, 550: 120378
doi: 10.1016/j.jnoncrysol.2020.120378
[48] Jiao J, Luo Q, Wei X S, et al. Influence of sealing treatment on the corrosion resistance of Fe-based amorphous coatings in HCl solution [J]. J. Alloy. Compd., 2017, 714: 356
doi: 10.1016/j.jallcom.2017.04.179
[49] Lu Y Z, Huang G K, Wang Y Z, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding [J]. Mater. Lett., 2018, 210: 46
doi: 10.1016/j.matlet.2017.08.125
[50] Wang H B, Li C Y, Wang S P, et al. Effect of heat-treatment on wear resistance and corrosion resistance of Fe-based amorphous coatings [J]. Chin. J. Nonferrous Met., 2022, 32: 1044
(王海博, 李春燕, 王顺平 等. 热处理对Fe基非晶涂层耐磨及耐腐蚀性能的影响 [J]. 中国有色金属学报, 2022, 32: 1044)
[51] Lei S, Hu R, Pan Y, et al. Effect of annealing processes on corrosion performances of Fe91.63B1.27Si7.09 amorphous strips [J]. Hot Work. Technol., 2016, 45: 244
(雷声, 胡蓉, 潘勇 等. 退火工艺对Fe91.63B1.27Si7.09非晶带材腐蚀性能的影响 [J]. 热加工工艺, 2016, 45: 244)
[52] Zhang C. Fabrication, structure and properties of amorphous metallic coatings [D]. Wuhan: Huazhong University of Science and Technology, 2012
(张诚. 非晶涂层的制备、结构与性能研究 [D]. 武汉: 华中科技大学, 2012)
[53] Li Y C, Zhang W W, Wang Y, et al. Effect of spray powder particle size on the bionic hydrophobic structures and corrosion performance of Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2022, 437: 128377
doi: 10.1016/j.surfcoat.2022.128377
[54] Wu J. Role of coating defects in corrosion behavior of Fe-based amorphous metallic coatings [D]. Hefei: University of Science and Technology of China, 2020
(吴静. 涂层缺陷对铁基非晶合金涂层腐蚀行为影响研究 [D]. 合肥: 中国科学技术大学, 2020)
[55] Wang Y, Wu C M, Li W, et al. Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2021, 416: 127176
doi: 10.1016/j.surfcoat.2021.127176
[56] Wang Y, Jiang S L, Zheng Y G, et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2011, 206: 1307
doi: 10.1016/j.surfcoat.2011.08.045
[57] Xu P. Effect of the second phase and sealing treatment on the corrosion behaviors of Fe-based amorphous coatings [D]. Wuhan: Huazhong University of Science and Technology, 2016
(徐鹏. 第二相与封孔处理对铁基非晶涂层腐蚀行为影响的研究 [D]. 武汉: 华中科技大学, 2016)
[58] Zhu W Y. Effect of sealing treatment on corrosion resistance of thermal sprayed metal base coatings [D]. Yangzhou: Yangzhou University, 2021
(朱无言. 封孔处理对热喷涂金属涂层耐腐蚀性能影响研究 [D]. 扬州: 扬州大学, 2021)
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[5] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[6] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[7] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[8] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[9] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[10] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[11] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[12] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[13] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[14] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
No Suggested Reading articles found!