Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1065-1069    DOI: 10.11902/1005.4537.2021.348
Current Issue | Archive | Adv Search |
Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition
XIA Xiaojian1, WAN Xinyuan1, GAO Yan2, WANG Qiwei2, YAN Kanghua1, CHEN Yunxiang1, HONG Yicheng1, ZHANG Junxi2()
1. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China
2. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
Cite this article: 

XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1065-1069.

Download:  HTML  PDF(3017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 1050 Al-alloy under current-carrying condition was studied by means of salt spray test, electrochemical measurement, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the current condition had a significant effect on the corrosion of 1050 Al-alloy. Both of the corrosion current density and mass loss rate of the sample increased gradually with the increment of applied current density.The corrosion behavior of 1050 Al-alloy in marine atmosphere was characterized in simulated electrification condition through the analysis of the structure and morphology of corrosion products.

Key words:  1050 Al-alloy      atmospheric corrosion      alternating current      transmission network     
Received:  04 December 2021     
ZTFLH:  TG172  
Fund: Science and Technology Project of State Grid Fujian Electric Company(521304200005)
About author:  ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.348     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1065

Fig.1  Trend graph of 1050 Al-alloy corrosion rate with current variation
Fig.2  XRD pattern of the corrosion products of 1050 Al-alloy passes different currents
Fig.3  SEM morphologies of 1050 Al- alloy with 0 A (a); 10 A (b); 20 A (c); 30 A (d); 40 A (e) currents
Fig.4  Potential polarization curves (a) and mean value diagram of corrosion current density (b) of 1050 Al-alloy under different currents
i / AEcorr / mVIcorr / A·cm-2Βa / mV-Βc / mV
0-765.767.234×10-613.16140.88
10-757.618.409×10-614.05117.36
20-762.111.008×10-522.71133.85
30-778.421.074×10-529.91253.89
40-777.372.023×10-530.36639.98
Table 1  Dynamic parameters fitting of polarization curves of 1050 aluminum alloy with different currents
[1] Huang X. Analysis on the selection of aluminum alloy cable [J]. Petrochem. Des., 2014, 31(1): 5
(黄旭. 浅析铝合金电缆的选用 [J]. 石油化工设计, 2014, 31(1): 5)
[2] Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
(夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697)
[3] Shu K. The type selection and optimization research on aluminum alloy transmission towers [D]. Harbin: Harbin Institute of Technology, 2011
(束康. 高强铝合金输电塔选型及优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[4] Xu W S. Application of aluminum alloy conductor in building electrical engineering [J]. Anhui Build., 2017, 24(3): 213
(徐旺生. 铝合金电缆在建筑电气工程中的应用探析 [J]. 安徽建筑, 2017, 24(3): 213)
[5] Lin D Y. Corrosion behavior of al-alloy 6082-T6 in simulated marine atmospheric environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 499
(林德源. 6082-T6铝合金在模拟沿海大气环境下的腐蚀行为和腐蚀机理 [J]. 腐蚀科学与防护技术, 2017, 29: 499)
[6] Chen Y X, Ni Q Z, Lin D Y, et al. Research progress in corrosion and service life prediction of metal materials in grid equipment under atmospheric environment [J]. Mater. Rev., 2016, 30(21): 89
(陈云翔, 倪清钊, 林德源 等. 大气环境下电网设备金属材料的腐蚀及服役寿命预测研究进展 [J]. 材料导报, 2016, 30(21): 89)
[7] Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208
(刘艳洁, 王振尧, 柯伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208)
[8] Li L, Chen C Y, Yang F, et al. Corrosion behavior of 0359 aluminum alloy in marine atmosphere [J]. Hot Work. Technol., 2013, 42(2): 28
(李玲, 陈朝轶, 杨帆 等. 0359铝合金海洋性大气腐蚀行为 [J]. 热加工工艺, 2013, 42(2): 28)
[9] Wang Z Y, Li Q X, Wang C, et al. Corrosion behaviors of Al alloy LC4 in Geermu salt lake atmosphere [J]. Chin. J. Nonferrous Met., 2007, 17: 24
(王振尧, 李巧霞, 汪川 等. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2007, 17: 24)
[10] Zhang Y G, Chen Y L, Zhang Y, et al. Initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments [J]. Chin. J. Aeronaut., 2022, 35: 277
doi: 10.1016/j.cja.2021.05.005
[11] Yang L, Zhao Q Y, He J, et al. Corrosion behavior of 6061 aluminum alloy in simulative industry-marine atmospheric environment [J]. Mater. China, 2018, 37: 28
(杨浪, 赵起越, 贺建 等. 6061铝合金在模拟工业-海洋大气环境下的腐蚀研究 [J]. 中国材料进展, 2018, 37: 28)
[12] Zhao F, Jin D, Li H Y. Accelerated corrosion behaviors of aluminum alloy 2A12 in simulated coastal industrial atmosphere environment [J]. Corros. Prot., 2021, 42(4): 19
(赵菲, 靳东, 李红英. 模拟沿海工业大气环境中2A12铝合金的加速腐蚀行为 [J]. 腐蚀与防护, 2021, 42(4): 19)
[13] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
doi: 10.1016/j.corsci.2006.02.006
[14] Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy [J]. Corros. Sci., 2006, 48: 2882
doi: 10.1016/j.corsci.2005.11.012
[15] Vilche J R, Varela F E, Acuña G, et al. A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples [J]. Corros. Sci., 1995, 37: 941
doi: 10.1016/0010-938X(95)00006-6
[16] Dan Z H, Takigawa S, Muto I, et al. Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys [J]. Corros. Sci., 2011, 53: 2006
doi: 10.1016/j.corsci.2011.02.027
[17] Li L, Su X. Corrosion behavior of aluminum alloy 1050A during cyclic wet-dry immersion test in simulated marine atmospheric environment [J]. Corros. Prot., 2014, 35: 367
(李丽, 苏霄. 1050A铝合金模拟海洋大气环境腐蚀行为的中性盐雾试验 [J]. 腐蚀与防护, 2014, 35: 367)
[18] Abdulstaar M, Mhaede M, Wagner L, et al. Corrosion behaviour of Al 1050 severely deformed by rotary swaging [J]. Mater. Des., 2014, 57: 325
doi: 10.1016/j.matdes.2014.01.005
[19] Mukhamed'yarova A N, Egorova S R, Nosova O V, et al. Influence of hydrothermal conditions on the phase transformations of amorphous alumina [J]. Mendeleev Commun., 2021, 31: 385
doi: 10.1016/j.mencom.2021.04.034
[20] Cao M, Liu L, Yu Z F, et al. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35: 651
doi: 10.1016/j.jmst.2018.09.060
[21] Alwahib A A, Muttlak W H, Mahdi B S, et al. Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy [J]. Surf. Interfaces, 2020, 20: 100557
[22] Shadravan A, Sadeghian Z, Nemati A, et al. Corrosion protection of 1050 aluminium alloy using a smart self-cleaning TiO2-CNT coating [J]. Surf. Coat. Technol., 2015, 275: 224
doi: 10.1016/j.surfcoat.2015.05.015
[23] Bokati K S, Dehghanian C. Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater [J]. J. Environ. Chem. Eng., 2018, 6: 1613
doi: 10.1016/j.jece.2018.02.015
[24] Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 241
(张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241)
[1] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[4] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[5] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[6] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[7] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[8] FAN Zhibin, LI Xingeng, WANG Xiaoming, WANG Qian. Review of Regional Atmospheric Corrosion Mapping Technologys[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[9] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[10] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[11] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[12] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[13] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[14] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[15] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
No Suggested Reading articles found!