Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1058-1064    DOI: 10.11902/1005.4537.2021.288
Current Issue | Archive | Adv Search |
Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper
LIAN Yubo(), ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei
Xi'an Changqing Chemical Group Co. Ltd., Xi'an 710018, China
Cite this article: 

LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1058-1064.

Download:  HTML  PDF(6061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A three-dimensional metal organic frame material (MOF-5) was synthesized by hydrothermal method, and then, the corrosion inhibitor benzotriazole (BTA) molecule was loaded into MOF-5 to form corrosion inhibitor capsules. The structures and corrosion inhibition properties of the prepared BTA@MOF-5 was characterized by means of TEM, SEM, FT-IR, XRD and electrochemical testing techniques. The results show that the prepared MOF-5 can be an ideal candidate as an inhibitor carrier, while the BTA molecules were successfully loaded into MOF-5. Furthermore, the acquired BTA@MOF-5 had the characteristics of slow release for corrosion inhibitor benzotriazole, which could provide corrosion protection for copper.

Key words:  BTA@MOF-5      corrosion inhibitor capsule      sustained release      metal protection     
Received:  19 October 2021     
ZTFLH:  TG174.42  
About author:  LIAN Yubo, E-mail: 14533362@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.288     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1058

Fig.1  Micro-structures of MOF-5 (a, b) and of BTA@MOF-5 (c, d)
Fig.2  FT-IR spectra of BTA, MOF-5 and BTA@MOF-5
Fig.3  XRD patterns of BTA, MOF-5 and BTA@MOF-5
Fig.4  TGA curves of BTA, MOF-5 and BTA@MOF-5
Fig.5  Standard absorbance curves (a) and concentration standard curve diagram (b) of BTA
Fig.6  UV-vis spectra of BTA released from MOF-5 for different time
t / hAbsorbance / L·mol-1·cm-1Concentration / mg·L-1
10.69513.6
20.75414.7
30.78915.4
40.80515.8
50.82416.2
60.84616.5
Table 1  Absorbance and concentration parameters of BTA after immersion for different time in 100 mg/L BTA@MOF-5 solution
Fig.7  Nyquist plots (a) and fitting equivalent circuit (b) of pure copper immersed for different time in 3.5%NaCl solutions without and with BTA
SampleRct / Ω·cm2CdlRf / Ω·cm2Cfη / %
Y01 / Sn ·Ω-1·cm-2n1Y02 / Sn ·Ω-1·cm-2n2
Blank172.333.85×10-60.83970.32×10454.81×10-50.4253---
MOF-552.7410.08×10-60.76730.59×104151.6×10-50.4314---
@-1 h35155.823×10-60.85581.36×1042.372×10-50.496280.5
@-2 h35545.301×10-60.85651.68×1042.085×10-50.512983.4
@-3 h37104.958×10-60.85342.19×1042.039×10-50.482487.0
@-4 h46784.659×10-60.85272.40×1041.751×10-50.517188.4
@-5 h54864.441×10-60.85072.62×1041.452×10-50.545489.5
@-6 h60954.076×10-60.85372.89×1041.263×10-50.56990.5
Table 2  Fitting electrochemical parameters of EIS of Cu in 3.5%NaCl solutions without and with BTA
Fig.8  Polarization curves of pure copper in 3.5%NaCl solutions without and with BTA
SampleCM / mg·L-1Ecorr vs SCE / mVIcorr / μA·cm-2η / %
Blank0-216.014.7---
MOF-5100-196.429.0---
BTA@MOF-5100-194.90.6795.5
Table 3  Fitting parameters of polarization curves of pure copper in 3.5%NaCl solutions without and with BTA
Fig.9  SEM micrographs of pure copper immersed for 24 h in 3.5%NaCl solutions without (a) and with (b) 100 mg/L BTA@MOF-5
[1] Pan Y, Sun L, Yang S C, et al. Research progress of pipeline corrosion and protection [J]. Corros. Sci. Prot. Technol., 2014, 26: 77
(潘一, 孙林, 杨双春 等. 国内外管道腐蚀与防护研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 77)
[2] Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review [J]. Corros. Sci., 2004, 46: 109
doi: 10.1016/S0010-938X(02)00257-3
[3] Zhang N. Corrosion detection technology and anticorrosion measures for oil and gas pipelines [J]. Total Corros. Control, 2018, 32(7): 108
(张宁. 油气管道腐蚀检测技术与防腐措施 [J]. 全面腐蚀控制, 2018, 32(7): 108)
[4] Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl- concentration on corrosion behavior of reinforced concrete in Soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
(丁清苗, 高宇宁, 侯文亮 等. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705)
[5] Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
[6] Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
(文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309)
[7] Qian B, Liu C B, Song Z W, et al. Anticorrosion performance of epoxy coating modified with nanocontainers [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 133
(钱备, 刘成宝, 宋祖伟 等. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 133)
[8] Chen T, Yang N W, Fu J J. Controlled release of cargo molecules from hollow mesoporous silicananoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes [J]. Chem. Commun., 2013, 49: 6555
doi: 10.1039/c3cc43221a
[9] Sun S Q, Zhao X Y, Cheng M, et al. Facile preparation of redox-responsive hollow mesoporous silica spheres for the encapsulation and controlled release of corrosion inhibitors [J]. Prog. Org. Coat., 2019, 136: 105302
[10] Hong C Y, Li X, Pan C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. J. Mater. Chem., 2009, 19: 5155
doi: 10.1039/b820534e
[11] Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers [J]. J. Mater. Chem., 2010, 20: 6681
doi: 10.1039/c0jm00810a
[12] Guo L, Zhu S H, Zhang S T, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium [J]. Corros. Sci., 2014, 87: 366
doi: 10.1016/j.corsci.2014.06.040
[13] Zhou S Q, Cao C N. The synergistic effect of organic amines and chloride ion on the corrosion inhibition of iron in acidic solution [J]. J. Chin. Soc. Corros. Prot., 1986, 6: 283
(周盛奇, 曹楚南. 酸性溶液中有机胺和氯离子对铁缓蚀的协同作用 [J]. 中国腐蚀与防护学报, 1986, 6: 283)
[14] Cao K Y, Yu Z X, Yin D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances [J]. Prog. Org. Coat., 2020, 143: 105629
[15] Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? [J]. J. Am. Chem. Soc., 2012, 134: 15016
doi: 10.1021/ja3055639 pmid: 22906112
[16] Koh K, Wong-Foy A G, Matzger A J. A porous coordination copolymer with over 5000 m2/g BET surface area [J]. J. Am. Chem. Soc., 2009, 131: 4184
doi: 10.1021/ja809985t
[17] Gao X C, Cui R X, Ji G F, et al. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy [J]. Nanoscale, 2018, 10: 6205
doi: 10.1039/C7NR08892B
[18] Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous Mesoporous Mater., 2009, 118: 296
doi: 10.1016/j.micromeso.2008.08.054
[19] Liu X J, Li W H, Wang W, et al. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings [J]. Mater. Corros., 2018, 69: 736
[20] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[21] Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
(谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013)
[1] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[2] LI Shuli, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Plant Corrosion Inhibitors for Aluminum[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[3] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[4] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[5] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[6] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[7] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[8] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[9] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[10] . Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[11] BAI Pengkai, XU Ping. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[12] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[15] . Study on corrosion inhibition performance of imidazoline derivatives[J]. 中国腐蚀与防护学报, 0, (): 0-0.
No Suggested Reading articles found!