|
|
Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations |
XIA Xiaojian1, CAI Jianbin1, LIN Deyuan1, WAN Xinyuan1, LI Yangsen2, ZHANG Biaohua3, CHEN Yunxiang1, HAN Jiceng1, ZOU Zhimin4, JIANG Chunhai4( ) |
1.State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China 2.State Grid Fujian Electric Power Corporation, Fuzhou 350001, China 3.Fujian Power Construction Engineering Co. Ltd. , Fujian Electric Power Commissioning Branch, Fuzhou 350007, China 4.Fujian Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, China |
|
|
Abstract The atmospheric corrosion status of major metallic equipment used in transformer substations in coastal areas, the relevant corrosion mechanisms and the current anti-corrosion measures are summarized based on on-site inspections and literature survey. It is revealedthat the corrosion of metallic equipment is intimately correlated to the high Cl-, SO2 and H2S concentrations in the atmosphere of coastal areas. The combination of various anti-corrosion technologies, including material modification, surface treatment and anti-corrosion coatings, may maximize the comprehensive anti-corrosion effect.
|
Received: 28 August 2020
|
|
Fund: Science and Technology Project of State Grid Fujian Electric Power Corporation(521304190001) |
Corresponding Authors:
JIANG Chunhai
E-mail: chjiang@xmut.edu.cn
|
About author: JIANG Chunhai, E-mail: chjiang@xmut.edu.cn
|
Cite this article:
XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 697-704.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2020.155 OR https://www.jcscp.org/EN/Y2021/V41/I5/697
|
1 |
Wang T P, Li H Q, Sun M C, et al. Corrosion and peeling off behavior of Ag coating on bushing wiring board for 66 kV HGIS in a coastal substation [J]. Corros. Sci. Prot. Technol., 2019, 31: 159
|
|
王天鹏, 李宏强, 孙明成等. 沿海变电站66 kV HGIS套管接线板镀银层腐蚀剥落原因分析 [J]. 腐蚀科学与防护技术, 2019, 31: 159
|
2 |
Fang Y J, Liu S, Wang X W, et al. Study on corrosion status and anti-corrosion measures of substations in coastal areas [J]. Electr. Technol., 2012, 19(12): 97
|
|
方乙君, 柳松, 王雄文等. 沿海地区变电站腐蚀现状及防腐措施研究 [J]. 电气技术, 2012, 19(12): 97
|
3 |
Cui T F, Liu D X, Xu X C, et al. Accelerated test method for high strength aluminum alloy in typical coastal area [J]. Equip. Environ. Eng., 2020, 17(5): 33
|
|
崔腾飞, 刘道新, 徐星辰等. 高强度铝合金典型沿海地区腐蚀行为加速试验方法研究 [J]. 装备环境工程, 2020, 17(5): 33
|
4 |
Zhou G, Lin D Y, Han J C, et al. Failure mechanism of 10 kV aerial insulation line of overhead distribution system in coastal and typhoon environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 643
|
|
周刚, 林德源, 韩纪层等. 沿海及强台风环境下10 kV配网架空绝缘导线的失效机理分析 [J]. 腐蚀科学与防护技术, 2019, 31: 643
|
5 |
Liu Z C. Research on initial corrosion behavior of typical metal materials in costal atmospheric environment [D]. Guangzhou: South China University of Technology, 2016
|
|
刘争春. 沿海大气环境下典型金属材料初期腐蚀行为研究 [D]. 广州: 华南理工大学, 2016
|
6 |
Chen J J, Li M, Wang J, et al. Common style of metallic components corrosion in substation and its solution [J]. Inner Mongolia Electr. Power, 2013, 31(1): 7
|
|
陈军君, 李明, 王军等. 变电站金属构件的常见腐蚀形式及解决措施 [J]. 内蒙古电力技术, 2013, 31(1): 7
|
7 |
Yang D N, Wang C, Wang Z Y, et al. Atmospheric corrosion of common metals used in transformer substation and protection measures [J]. Equip. Environ. Eng., 2016, 13(1): 126
|
|
杨大宁, 汪川, 王振尧等. 变电站常用金属的大气腐蚀行为及其防护 [J]. 装备环境工程, 2016, 13(1): 126
|
8 |
Lu S M. Reasons and antiseptic of transfer station metal corrosion in costal atmospheric environment [D]. Guangzhou: South China University of Technology, 2017
|
|
卢思敏. 沿海变电站金属材料的腐蚀成因及防腐 [D]. 广州: 华南理工大学, 2017
|
9 |
Zhang L, Wang Z Y, Zhao C Y, et al. Study on corrosion behavior of carbon steel and weathering steel in salt spray test [J]. Equip. Environ. Eng., 2014, 11(1): 1
|
|
张琳, 王振尧, 赵春英等. 碳钢和耐候钢在盐雾环境下的腐蚀行为研究 [J]. 装备环境工程, 2014, 11(1): 1
|
10 |
Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
|
11 |
Cheng L, Ma G, Chen X, et al. Corrosion and protection of steel structures for transmission and distribution projuct [J]. Steel Const., 2014, 29(2): 76
|
|
程灵, 马光, 陈新等. 输变电工程中钢结构的腐蚀与防护 [J]. 钢结构, 2014, 29(2): 76
|
12 |
Yang D N, Zhao S Y, Fu C F, et al. Service conditions of protective coatings of grid substations in Hainan province [J]. Corros. Prot., 2016, 37: 249
|
|
杨大宁, 赵书彦, 符传福等. 海南电网变电站金属架构防护涂层的使用情况 [J]. 腐蚀与防护, 2016, 37: 249
|
13 |
Yin X T, Li W H, Li L, et al. Research status of corrosion behavior and anticorrosion measures of aluminum alloy under different climate in China [J]. Mater. Prot., 2019, 52(3): 111
|
|
尹学涛, 李文翰, 李丽等. 铝合金在我国不同气候条件下的腐蚀行为及防腐蚀措施的研究现状 [J]. 材料保护, 2019, 52(3): 111
|
14 |
Oesch S, Faller M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum: A short literature survey and results of laboratory exposures [J]. Corros. Sci., 1997, 39: 1505
|
15 |
Lv W Y, Liu S N, Su W, et al. Corrosion and protection of copper materials in transformer substation under heavy industry circumstance [J]. Clean. World, 2013, 29(11): 9
|
|
吕旺燕, 刘世念, 苏伟等. 重工业污染下变电站铜构件的腐蚀特征及防治对策 [J]. 清洗世界, 2013, 29(11): 9
|
16 |
Ren H T, Yin Z H, Wang P, et al. Study status of H2S influence on copper corrosion in grids [J]. Corros. Prot., 2014, 35: 1074
|
|
任汉涛, 银朝晖, 王平等. 电网铜材在含H2S大气中的腐蚀研究现状 [J]. 腐蚀与防护, 2014, 35: 1074
|
17 |
Li X, Guo J K. Cause and protection of corrosion of copper materials in a 35 kV indoor transformer substation [J]. Corros. Prot., 2004, 25: 133
|
|
李兴, 郭军科. 35 kV室内变电站铜材腐蚀的原因分析与对策 [J]. 腐蚀与防护, 2004, 25: 133
|
18 |
Reid M, Punch J, Ryan C, et al. Microstructural development of copper sulfide on copper exposed to humid H2S [J]. J. Electrochem. Soc., 2007, 154: C209
|
19 |
Zhang Z Y, Yue Z W, Jiang B, et al. Application status of hot dip galvanizing in corrosion protection of steel structure [J]. Mater. Prot., 2019, 52(12): 135
|
|
张振岳, 岳增武, 姜波等. 热浸镀锌产业在钢结构腐蚀防护中的应用现状 [J]. 材料保护, 2019, 52(12): 135
|
20 |
Zhao S Y, Tong X H, Liu F C, et al. Corrosion resistance three Zn-rich epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563
|
|
赵书彦, 童鑫红, 刘福春等. 环氧富锌涂层防腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 563
|
21 |
Yang F, Liang Y C, Kuang Y J, et al. Corrosion behavior of galvanized steel in Dongguan atmosphere and simulated atmosphere [J]. Corros. Prot., 2017, 38: 767
|
|
杨帆, 梁永纯, 匡尹杰等. 镀锌钢在东莞大气及模拟大气中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 767
|
22 |
Xu L. Study of anticorrosion performance and mechanism of cold galvanizing coating on steel Substrate [D]. Hefei: University of Science and Technology of China, 2019
|
|
徐龙. 钢基材表面冷涂锌涂层的防腐蚀性能和机理研究 [D]. 合肥: 中国科学技术大学, 2019
|
23 |
Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 572
|
|
王贵容, 郑宏鹏, 蔡华洋等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 572
|
24 |
Song X. Discussion on some issues of waterborne coatings applied in heavy-duty anticorrosion [J]. Coat. Prot., 2018, 39(9): 46
|
|
宋笑. 水性涂料重防腐应用若干问题探讨 [J]. 涂层与防护, 2018, 39(9): 46
|
25 |
Bai Y F, Zhao Z X, Sun W P, et al. Application status of heavy-duty anticorrosive coatings for coastal power plants [J]. Electroplat. Finish., 2019, 38: 579
|
|
白玉峰, 赵忠贤, 孙伟鹏等. 沿海电厂重防腐涂料的应用状况 [J]. 电镀与涂饰, 2019, 38: 579
|
26 |
Liu R X. Discussion of corrosion inhibitor of coatings [J]. Mod. Paint Finish., 2011, 14(2): 19
|
|
刘仁新. 试论涂料缓蚀剂 [J]. 现代涂料与涂装, 2011, 14(2): 19
|
27 |
Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
|
|
王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
|
28 |
El-Mahdy G A, Nishikata A, Tsuru T. Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dry conditions [J]. Corros. Sci., 2000, 42: 183
|
29 |
Bovard F S. Environmentally induced cracking of an Al-Zn-Mg-Cu alloy [D]. Pittsburgh: University of Pittsburgh, 2005
|
30 |
Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloys Compd., 2014, 612: 42
|
31 |
Zhang Q, Yang S L, Jin D, et al. Study on corrosion behavior of aluminum alloy used in substation equipment in simulated coastal industrial atmosphere [J]. Rare Met. Cemen. Carb., 2018, 46(5): 65
|
|
张强, 阳慎兰, 靳东等. 变电站设备用铝合金在模拟沿海工业大气环境中的腐蚀行为研究 [J]. 稀有金属与硬质合金, 2018, 46(5): 65
|
32 |
Guo Z C, Wang Y F, Wang R M. The development of corrosion protection of aluminum aerospace alloys [J]. Mater. Rev., 2005, 19(9): 71
|
|
郭增昌, 王云芳, 王汝敏. 航空铝合金防腐保护研究进展 [J]. 材料导报, 2005, 19(9): 71
|
33 |
Mu X L, Xie P F, Jin T, et al. Corrosion behavior of nano-coating/aluminum alloy in seawater solution with different pH values [J]. Equip. Envir. Eng., 2020, 17(1): 130
|
|
慕仙莲, 解鹏飞, 金涛等. 纳米涂层/铝合金在不同pH值的海水溶液中的腐蚀行为研究 [J]. 装备环境工程, 2020, 17(1): 130
|
34 |
Zhang X, Ju D Y, Li J H, et al. Preparation and performance of anti-corrosion organic-inorganic hybrid coatings for aluminum alloy by sol-gel method [J]. Mater. Prot., 2019, 52(7): 12
|
|
张欣, 巨东英, 李建辉等. 溶胶-凝胶法制备铝合金耐蚀有机-无机杂化SiO2涂层及其性能研究 [J]. 材料保护, 2019, 52(7): 12
|
35 |
Zhou B T, Wang Y B, Huang Q Y, et al. Effect of hydrothermal pre-treatment on anti-corrosion properties of ZnAl-LDHs prepared on the surface of aluminium alloys [J]. Sur. Technol., 2020, 49(4): 315
|
|
周秉涛, 王友彬, 黄秋雨等. 水热预处理对铝合金表面ZnAl-LDHs涂层防腐蚀性能的影响 [J]. 表面技术, 2020, 49 (4) : 315
|
36 |
Wan H J, Huang H J, Hu J W, et al. Anti-H2S corrosion properties of three copper corrosion inhibitors [J]. Equip. Environ. Eng., 2013, 10(5): 47
|
|
万红敬, 黄红军, 胡建伟等. 三种铜缓蚀剂抗H2S腐蚀性能研究 [J]. 装备环境工程, 2013, 10(5): 47
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|