Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 487-492    DOI: 10.11902/1005.4537.2020.103
Current Issue | Archive | Adv Search |
Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique
WANG Jun1, CHEN Junjun1, XIE Yi1, XU Song1, LIU Lanlan2, WU Tangqing3(), YIN Fucheng3
1.State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410007, China
2.State Grid Hunan Electric Power Company Limited Transmission Maintenance, Changsha 410100, China
3.School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Download:  HTML  PDF(5290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of carbon steels in Hunan province was comparatively studied via atmospheric exposure testing and atmospheric corrosion monitoring (ACM) technique, while the effects of environmental factors and the samples' shape on the corrosivity evaluation of atmospheric environments were assessed. The results showed that the corrosion rate of carbon steels have a positive correlation with SO2 deposit rate in the atmosphere, while the Cl- deposit rate becomes the important influence factor when the corrosion of carbon steels exposed in sites at or nearby a chlorine chemical plant. The corrosion rate of Q345 steel is higher than that of Q235 steel, and the corrosion rate of Q235 angle steel is higher than that of the Q235 flat steel. A linear relationship between the corrosion rate and the cumulative electric quantity measured by ACM was revealed for Q235 carbon steel, thus ACM technology can be used to predict the atmospheric corrosion behavior of carbon steels and assess the corrosivity of atmospheric environments.

Key words:  Q235 steel      Q345 steel      atmospheric corrosion      ACM technology     
Received:  13 June 2020     
ZTFLH:  TG172.4  
Fund: Science and Technology Project of State Grid(5216A01600VW)
Corresponding Authors:  WU Tangqing     E-mail:  tqwu10s@alum.imr.ac.cn
About author:  WU Tangqing, E-mail: tqwu10s@alum.imr.ac.cn

Cite this article: 

WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 487-492.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.103     OR     https://www.jcscp.org/EN/Y2021/V41/I4/487

Fig.1  Annual corrosion depths of Q235 flat steel, Q345 flat steel and Q235 angle steel in 14 stations after 1 a exposure
Fig.2  Relationships between the environmental factors and the corrosion rate of Q235 flat steel
Fig.3  Macro-morphologies of Q235 flat steel (a~d) and Q235 angle steel (e~h) samples after 2 a exposure in 2# station (a, e), 3# station (b, f), 10# station (c, g) and 14# station (d, h)
Fig.4  Variations of the corrosion depth of Q235 flat steel (a), Q345 flat steel (b) and Q235 angle steel (c) in 2#, 3#, 10# and 14# stations with exposure time
Fig.5  Relationships between the corrosion factors and the corrosion rate
Fig.6  Relationship between ACM cumulative electric quantity and the corrosion rate
StandardUnitMaterialCorrosivity grade of atmosphere
C1C2C3C4C5
ISOμm·a-1Carbon steelγcorr≤1.31.3<γcorr≤2525<γcorr≤5050<γcorr≤8080<γcorr≤200
ACMC·cm2·a-1Q235flat steel---Q≤10.510.5<Q≤22.722.7<Q≤37.337.3<Q≤96.0
Table 1  Comparison between ACM and ISO evaluation standards of environmental corrosion
1 Pan C C, Ma C, Xia D H. Estimation for relevance of atmospheric corrosion initiation with surface texture of several metallic materials by electron backscattering diffraction [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 495
潘成成, 马超, 夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理 [J]. 中国腐蚀与防护学报, 2019, 39: 495
2 Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment [J]. Corros. Sci., 2018, 137: 163
3 Meng X B, Jiang W B, Liao Y L, et al. Investigation on atmospheric corrosion behavior of transmission tower materials in simulated industrial environments [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 460
孟晓波, 蒋武斌, 廖永力等. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 460
4 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
5 Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferrous. Met. Soc. China, 2007, 17: 326
6 Liu W, Jiang Y K, Ge H H. Comparison of electrochemical corrosion behavior of copper in liquid film in atmosphere containing SO2 or H2S [J]. Corros. Prot., 2015, 36: 934
刘伟, 蒋以奎, 葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较 [J]. 腐蚀与防护, 2015, 36: 934
7 Zhang J K, Chen G H, Wang J Q, et al. Microstructures of corrosion layer of ACSR conductor in atmospheric corrosion and corrosion mechanism [J]. Chin. J. Nonferrous. Met., 2011, 21: 411
张建堃, 陈国宏, 王家庆等. 钢芯铝绞导线大气腐蚀产物层的结构及腐蚀机理 [J]. 中国有色金属学报, 2011, 21: 411
8 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
9 Xu S, Xie Y, Wang J, et al. Corrosion failure analysis of copper wires in terminal boxes in a rural atmospheric environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 659
徐松, 谢亿, 王军等. 乡村大气环境中室外端子箱内铜导线腐蚀失效分析 [J]. 腐蚀科学与防护技术, 2019, 31: 659
10 Wu T Q, Zhou Z F, Xu S, et al. A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation [J]. Eng. Fail. Anal., 2019, 98: 83
11 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
12 Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
邓俊豪, 胡杰珍, 邓培昌等. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 331
13 Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomena [J]. Corros. Sci., 1976, 16: 111
14 Mizuno D, Suzuki S, Fujita S, et al. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor [J]. Corros. Sci., 2014, 83: 217
15 Feng C, Peng B C, Xie Y, et al. Corrosion behavior of T91 steel by salt spray with 0.1%NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 583
冯超, 彭碧草, 谢亿等. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 583
[1] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[2] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[6] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[11] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[13] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[14] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[15] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
No Suggested Reading articles found!