Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 687-692    DOI: 10.11902/1005.4537.2021.208
Current Issue | Archive | Adv Search |
Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2
HU Yunyuan1, QIAN Wei2, HUA Yinqun1,2(), YE Yunxia2, CAI Jie2, DAI Fengze2
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Download:  HTML  PDF(10488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Gd2Zr2O7 ceramics, as a candidate material for making thermal barrier coating, was subjected firstly to pre-corrosion beneath deposits of CaO-MgO-Al2O3-SiO2 (CMAS) powders in temperature range of 900-1300 ℃ for 0.5 h, afterwards, the pre-corroded Gd2Zr2O7 ceramics were subjected to CMAS induced hot corrosion at 1250 ℃ for 3 h. Then the corroded ceramics were characterized by means of XRD, SEM and EDS in terms of the composition and phase constituent of corrosion products and cross-sectional morphology of the corroded ceramics. Results reveal that after being pre-corroded beneath CMAS deposits at 1100 ℃, the ceramics present better corrosion resistance rather than the blank ceramics during the post-corrosion beneath CMAS deposits at 1250 ℃. Which presented corrosion depth of 39.46 and 70.49 μm after CMAS induced hot corrosion at 1250 ℃ for 3 and 10 h respectively. It is proposed that during the pre-corrosion, the Gd2Zr2O7 could react with the melt CMAS at 1250 ℃ to form a dense top reaction scale riched in apatite (Ca2Gd8(SiO4)6O2), which can effectively inhibit the further penetration of CMAS during the post corrosion process induced by CMAS deposits.

Key words:  thermal barrier coating      Gd2Zr2O7      CaO-MgO-Al2O3-SiO2 (CMAS)      apatite      hot corrosion     
Received:  23 August 2021     
ZTFLH:  TG174  
Fund: National Nature Science Foundation of China(51641102)
Corresponding Authors:  HUA Yinqun     E-mail:  huayq@ujs.edu.cn
About author:  HUA Yinqun, E-mail: huayq@ujs.edu.cn

Cite this article: 

HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 687-692.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.208     OR     https://www.jcscp.org/EN/Y2022/V42/I4/687

Fig.1  XRD pattern of as-prepared bulk Gd2Zr2O7
Fig.2  XRD pattern (a) and TG-DSC curves (b) of CMAS powders
Fig.3  Cross sections of Gd2Zr2O7 un-treated (a) and pre-treated at 900 ℃ (b), 1000 ℃ (c) and 1100 ℃ (d) after 3 h CMAS corrosion at 1250 ℃
Fig.4  Thicknesses of the reaction layers formed on Gd2Zr2O7 pre-corroded at different temperatures after CMAS corrosion at 1250 ℃ for 3 h
Fig.5  SEM images of the upper (a) and bottom (b) reaction layers, EDS analysis (c) at the point 1 in Fig.5a and EDS mappings of Si (d), Al (e), Ca (f)
Fig.6  Cross sections of Gd2Zr2O7 untreated (a-c) and pre-corroded (d-f) under the condition of 1100 ℃/0.5 h after CMAS corrosion at 1250 ℃ for 5 min (a, d), 5 h (b, e) and 10 h (c, f)
1 Han S H, Zhang J J, Li T J. Corrosion behavior and failure prediction of YSZ coatings under CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 708
doi: 10.1007/s11666-020-01141-3
2 Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings-a state of the art review [J]. Met. Mater. Int., 2021, 27: 1947
doi: 10.1007/s12540-020-00705-w
3 Zhang S R, Dong H Y, Ma W, et al. Corrosion resistance of air plasma sprayed thermal barrier coating SrZrO3 on superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS) [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 53
张珊榕, 董红英, 马文 等. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 53
4 Wang Z P, Fei Y J, Liu Y K. Failure mechanism, improvment method and future development direction of thermal barrier coatings [J]. Surf. Technol., 2021, 50(7): 126
王志平, 费宇杰, 刘延宽. 热障涂层失效机理、改进方法及未来发展方向 [J]. 表面技术, 2021, 50(7): 126
5 Krause A R, Garces H F, Dwivedi G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings [J]. Acta Mater., 2016, 105: 355
doi: 10.1016/j.actamat.2015.12.044
6 Liu Q M, Huang S Z, He A J. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35: 2814
doi: 10.1016/j.jmst.2019.08.003
7 Pujol G, Ansart F, Bonino J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J]. Surf. Coat. Technol., 2013, 237: 71
doi: 10.1016/j.surfcoat.2013.08.055
8 Morelli S, Testa V, Bolelli G, et al. CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes [J]. J. Eur. Ceram. Soc., 2020, 40: 4084
doi: 10.1016/j.jeurceramsoc.2020.04.058
9 Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
doi: 10.1016/j.ceramint.2017.09.197
10 Kumar R, Jordan E, Gell M, et al. CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings [J]. Surf. Coat. Technol., 2017, 327: 126
doi: 10.1016/j.surfcoat.2017.08.023
11 Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
doi: 10.1016/j.surfcoat.2021.126969
12 Senturk B S, Garces H F, Ortiz A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions [J]. J. Therm. Spray Technol., 2014, 23: 708
doi: 10.1007/s11666-014-0077-2
13 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
14 Kandasamy P, Govindarajan S, Gurusamy S. Volcanic ash infiltration resistance of new-generation thermal barrier coatings at 1150 ℃ [J]. Surf. Coat. Technol., 2020, 401: 126226
doi: 10.1016/j.surfcoat.2020.126226
15 Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
doi: 10.1016/j.ceramint.2016.09.106
16 Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
doi: 10.1016/j.matlet.2018.06.066
17 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
doi: 10.1111/j.1551-2916.2007.02175.x
18 Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
doi: 10.1016/j.jeurceramsoc.2017.03.069
19 Drexler J M, Gledhill A D, Shinoda K, et al. Jet engine coatings for resisting volcanic ash damage [J]. Adv. Mater., 2011, 23: 2419
doi: 10.1002/adma.201004783
20 Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits [J]. Surf. Coat. Technol., 2013, 235: 165
doi: 10.1016/j.surfcoat.2013.07.029
21 Ponnilavan V, Aravind A, Ezhilan M, et al. Titanium substitution in Gd2Zr2O7 for thermal barrier coating applications [J]. Ceram. Int., 2019, 45: 16450
doi: 10.1016/j.ceramint.2019.05.176
22 Perrudin F, Rio C, Vidal-Sétif M H, et al. Gadolinium oxide solubility in molten silicate: dissolution mechanism and stability of Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 silicate phases [J]. J. Am. Ceram. Soc., 2017, 37: 2657
[1] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[2] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[3] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[4] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[5] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[6] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[7] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[8] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[9] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[10] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] Guangming LIU,Kangsheng LIU,Xiaofei MAO,Zhongping WAN,Jianhang HUANG,Mingming YU,Yuankui WANG. Hot Corrosion of T91 Steel in Molten Mixture of KCl+Na2SO4+K2SO4[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[12] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[13] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[14] Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[15] Bo YANG,Maodong LI,Guangming LIU,Yuankui WANG,Kangsheng LIU,Wei ZHAI,Jianhang HUANG. Hot Corrosion Behavior of Inconel 625/NiCr Coating Prepared by HOVF[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
No Suggested Reading articles found!