|
|
Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2 |
HU Yunyuan1, QIAN Wei2, HUA Yinqun1,2( ), YE Yunxia2, CAI Jie2, DAI Fengze2 |
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 2.School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract The Gd2Zr2O7 ceramics, as a candidate material for making thermal barrier coating, was subjected firstly to pre-corrosion beneath deposits of CaO-MgO-Al2O3-SiO2 (CMAS) powders in temperature range of 900-1300 ℃ for 0.5 h, afterwards, the pre-corroded Gd2Zr2O7 ceramics were subjected to CMAS induced hot corrosion at 1250 ℃ for 3 h. Then the corroded ceramics were characterized by means of XRD, SEM and EDS in terms of the composition and phase constituent of corrosion products and cross-sectional morphology of the corroded ceramics. Results reveal that after being pre-corroded beneath CMAS deposits at 1100 ℃, the ceramics present better corrosion resistance rather than the blank ceramics during the post-corrosion beneath CMAS deposits at 1250 ℃. Which presented corrosion depth of 39.46 and 70.49 μm after CMAS induced hot corrosion at 1250 ℃ for 3 and 10 h respectively. It is proposed that during the pre-corrosion, the Gd2Zr2O7 could react with the melt CMAS at 1250 ℃ to form a dense top reaction scale riched in apatite (Ca2Gd8(SiO4)6O2), which can effectively inhibit the further penetration of CMAS during the post corrosion process induced by CMAS deposits.
|
Received: 23 August 2021
|
|
Fund: National Nature Science Foundation of China(51641102) |
Corresponding Authors:
HUA Yinqun
E-mail: huayq@ujs.edu.cn
|
About author: HUA Yinqun, E-mail: huayq@ujs.edu.cn
|
1 |
Han S H, Zhang J J, Li T J. Corrosion behavior and failure prediction of YSZ coatings under CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 708
doi: 10.1007/s11666-020-01141-3
|
2 |
Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings-a state of the art review [J]. Met. Mater. Int., 2021, 27: 1947
doi: 10.1007/s12540-020-00705-w
|
3 |
Zhang S R, Dong H Y, Ma W, et al. Corrosion resistance of air plasma sprayed thermal barrier coating SrZrO3 on superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS) [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 53
|
|
张珊榕, 董红英, 马文 等. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 53
|
4 |
Wang Z P, Fei Y J, Liu Y K. Failure mechanism, improvment method and future development direction of thermal barrier coatings [J]. Surf. Technol., 2021, 50(7): 126
|
|
王志平, 费宇杰, 刘延宽. 热障涂层失效机理、改进方法及未来发展方向 [J]. 表面技术, 2021, 50(7): 126
|
5 |
Krause A R, Garces H F, Dwivedi G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings [J]. Acta Mater., 2016, 105: 355
doi: 10.1016/j.actamat.2015.12.044
|
6 |
Liu Q M, Huang S Z, He A J. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35: 2814
doi: 10.1016/j.jmst.2019.08.003
|
7 |
Pujol G, Ansart F, Bonino J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J]. Surf. Coat. Technol., 2013, 237: 71
doi: 10.1016/j.surfcoat.2013.08.055
|
8 |
Morelli S, Testa V, Bolelli G, et al. CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes [J]. J. Eur. Ceram. Soc., 2020, 40: 4084
doi: 10.1016/j.jeurceramsoc.2020.04.058
|
9 |
Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
doi: 10.1016/j.ceramint.2017.09.197
|
10 |
Kumar R, Jordan E, Gell M, et al. CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings [J]. Surf. Coat. Technol., 2017, 327: 126
doi: 10.1016/j.surfcoat.2017.08.023
|
11 |
Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
doi: 10.1016/j.surfcoat.2021.126969
|
12 |
Senturk B S, Garces H F, Ortiz A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions [J]. J. Therm. Spray Technol., 2014, 23: 708
doi: 10.1007/s11666-014-0077-2
|
13 |
Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
|
|
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
|
14 |
Kandasamy P, Govindarajan S, Gurusamy S. Volcanic ash infiltration resistance of new-generation thermal barrier coatings at 1150 ℃ [J]. Surf. Coat. Technol., 2020, 401: 126226
doi: 10.1016/j.surfcoat.2020.126226
|
15 |
Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
doi: 10.1016/j.ceramint.2016.09.106
|
16 |
Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
doi: 10.1016/j.matlet.2018.06.066
|
17 |
Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
doi: 10.1111/j.1551-2916.2007.02175.x
|
18 |
Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
doi: 10.1016/j.jeurceramsoc.2017.03.069
|
19 |
Drexler J M, Gledhill A D, Shinoda K, et al. Jet engine coatings for resisting volcanic ash damage [J]. Adv. Mater., 2011, 23: 2419
doi: 10.1002/adma.201004783
|
20 |
Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits [J]. Surf. Coat. Technol., 2013, 235: 165
doi: 10.1016/j.surfcoat.2013.07.029
|
21 |
Ponnilavan V, Aravind A, Ezhilan M, et al. Titanium substitution in Gd2Zr2O7 for thermal barrier coating applications [J]. Ceram. Int., 2019, 45: 16450
doi: 10.1016/j.ceramint.2019.05.176
|
22 |
Perrudin F, Rio C, Vidal-Sétif M H, et al. Gadolinium oxide solubility in molten silicate: dissolution mechanism and stability of Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 silicate phases [J]. J. Am. Ceram. Soc., 2017, 37: 2657
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|