Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 540-550    DOI: 10.11902/1005.4537.2021.138
Current Issue | Archive | Adv Search |
Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board
MA Xiaoze1, MENG Lingdong2, CAO Xiangkang1, XIAO Song1, DONG Zehua1()
1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.School of Materials, Academy of Armored Forces, Beijing 100086, China
Download:  HTML  PDF(8644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The initial atmospheric corrosion behavior of Cu foils induced by co-depositioned with of particulates with different proportions of (NH4)2SO4 and NaCl particles in a weathering chamber was assessed via electrochemical impedance (EIS), quartz crystal microbalance (QCM) and thin foil electrical resistance probe (TER). The results show that the mixed salt particles of (NH4)2SO4 and NaCl promote the initial atmospheric corrosion of PCB-Cu compared with sole NaCl salt particles in the initial 30 h when the total deposition amount is equal. However, after 30 h, the atmospheric corrosion rate of PCB-Cu beneath the mixed salts is significantly lower than that beneath the sole NaCl particles when the mixing ratio of (NH4)2SO4 to NaCl is 1:1, and the inhibition ratio of Cu corrosion can reach 84%, indicating that the (NH4)2SO4 can refrain the corrosion of PCB-Cu beneath induced by NaCl particles. According to the SEM, XRD and XPS analysis of corrosion products, in the early stage of corrosion, due to the catalytic effect of NH4+ on the corrosion of Cu, dense Cu2O corrosion products quickly formed on the copper surface, which dramatically refrains the corrosion of Cu substrate. Although Cu2O corrosion products are also generated on PCB-Cu surface where NaCl particles are deposited, they are relatively loose and porous, which could accelerate the corrosion of Cu beneath porous Cu2O layer due to the cathodic depolarization of the corrosion product layer.

Key words:  atmospheric corrosion      PCB copper      pollutant      corrosion monitoring      electrical resistance probe      quartz crystal microbalance     
Received:  15 June 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51371087)
Corresponding Authors:  DONG Zehua     E-mail:  zhdong@hust.edu.cn
About author:  DONG Zehua, E-mail: zhdong@hust.edu.cn

Cite this article: 

MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 540-550.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.138     OR     https://www.jcscp.org/EN/Y2022/V42/I4/540

Fig.1  EIS plots of comb-like electrodes with surface deposition of different proportions of mixed salts after exposure for 72 h at 30 ℃ and RH80%
Fig.2  Schematic diagram of absorbed thin electrolyte layer on the symmetric comb-like electrode (a) and the corresponding equivalent circuit for EIS curve fitting (b)
Ratio:NaCl / (NH4)2SO4RTEL / Ω·cm2Rct / Ω·cm2CPEdl / F·cm-2 Hz1-nCPEdl-nW / Ω·cm2
4:03.948111.79×10-80.411.14×104
3:15.259003.72×10-70.542.88×104
2:24795.95×1041.25×10-100.772.75×105
1:394.371.09×1052.83×10-80.732.81×105
0:4402.31.19×1067.74×10-100.921.19×104
Table 1  Fitting results of EIS of comb-like Cu electrodes with surface deposition of different proportions of mixed salt particles after exposure at 30 ℃ and RH80% for 72 h
Fig.3  Bode plots of the comb-like Cu electrodes with surface deposition of 40 µg/cm2 ammonium sulfate (a) and sodium sulfate (b) after exposure for 2 h at 30 ℃ under different humidity conditions
Fig.4  EIS of the comb-like Cu electrodes with surface deposition of different proportions of mixed salt particles after exposure in the weathering chamber at 30 ℃ and RH90% for 72 h
Ratio of NaCl / (NH4)2SO4Rs / Ω·cm2Rct / Ω·cm2Cdl / F·cm-2 Hz1-nCdl-nW / Ω·cm2
4:05.66131.001×10-60.405.10×103
3:110.822556.992×10-60.579.95×103
2:244.4532487.882×10-60.481.13×105
1:399.88245.292×10-80.842.96×104
0:4174.36.05×1041.247×10-100.851.52×104
Table 2  Fitting results of comb-like Cu electrode after surface deposition with different proportions of mixed salt particles at 30 ℃ and RH90% for 72 h
Fig.5  Time dependences of low-frequency impedance |Z|0.01 Hz of the comb-like electrodes with surface deposition of different proportions of salt particles during exposure at 30 ℃ and RH90%
Fig.6  Comparison of |Z|0.01 Hz of the comb-like electrodes with surface deposition of different proportions of sodium sulfate, ammonium sulfate and sodium chloride salt particles after exposure at 30 ℃ and RH90%
Fig.7  Mass gains of Cu-plated quartz crystal with surface deposition of different proportion of salt particles during exposure at 30 ℃ and RH90%
Fig.8  Variations of thickness loss (a, c) and corrosion rate (b) of thin Cu electrical resistance probe with corrosion time and proportion of deposited salt particles during exposure at 30 ℃ and RH90%
Fig.9  XRD patterns of corrosion products formed on Cu specimen deposited with different proportions of salt particles after exposure at 30℃ and RH90% for 72 h
Fig.10  XPS spectra of Cu 2P, S 2P, C 1s of Cu specimen deposited with 40 µg/cm2 NaCl, mixture of NaCl and (NH4)2SO4 (1:1) and (NH4)2SO4 after exposure at 30 ℃ and RH90% for 3 d
Fig.11  Corrosion morphologies of copper specimens deposited with the mass ratio of NaCl 0:0 (a), 4:0 (b), 3:1 (c), 2:2 (d), 1:3 (e) and 0:4 (f) of salt particles after exposure at 30 ℃ and RH90% for 3 d
1 Gil H, Calderón J A, Buitrago C P, et al. Indoor atmospheric corrosion of electronic materials in tropical-mountain environments [J]. Corros. Sci., 2010, 52: 327
doi: 10.1016/j.corsci.2009.09.019
2 Xiao K, Gao X, Yan L D, et al. Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: salty dust and diurnal temperature difference [J]. Chem. Eng. J., 2018, 336: 92
doi: 10.1016/j.cej.2017.11.017
3 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
4 Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
doi: 10.1016/j.corsci.2011.01.031
5 Yan L D, Xiao K, Yi P, et al. The corrosion behavior of PCB-ImAg in industry polluted marine atmosphere environment [J]. Mater. Des., 2017, 115: 404
doi: 10.1016/j.matdes.2016.11.074
6 Ding K K, Li X G, Xiao K, et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2446
doi: 10.1016/S1003-6326(15)63861-4
7 Xiao K, Dong C F, Li X G, et al. Effect of deposition of NaCl on the initial atmospheric corrosion of Q235 [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 26
肖葵, 董超芳, 李晓刚 等. NaCl颗粒沉积对Q235钢早期大气腐蚀的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 26
8 Badilla G L, Samaniego E R, Perea S L T, et al. Characterization of copper sulfides formed in MEMS connections by atmospheric corrosion in indoor of electronics industry of arid and marine environments [J]. IFAC Proceed. Vol., 2013, 46: 24
9 Sonawane P D, Raja V K B, Gupta M. Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI joints on Cu substrate [J]. Mater. Today: Proceed., 2021, 46: 1101
10 Perveen K, Bridges G E, Bhadra S, et al. Corrosion potential sensor for remote monitoring of civil structure based on printed circuit board sensor [J]. IEEE Trans. Instrum. Meas., 2014, 63: 2422
11 Minzari D, Jellesen M S, Møller P, et al. On the electrochemical migration mechanism of tin in electronics [J]. Corros. Sci., 2011, 53: 3366
doi: 10.1016/j.corsci.2011.06.015
12 Yu X Y, Wang Z H, Lu Z H. In situ investigation of atmospheric corrosion behavior of copper under thin electrolyte layer and static magnetic field [J]. Microelectron. Reliab., 2020, 108: 113630
doi: 10.1016/j.microrel.2020.113630
13 Yu X Y, Wang Z H, Lu Z H. Atmospheric corrosion behavior of copper under static magnetic field environment [J]. Mater. Lett., 2020, 266: 127472
doi: 10.1016/j.matlet.2020.127472
14 Zhong X K. The corrosion and electrochemical migration of tin under thin electrolyte layers [D]. Wuhan: Huazhong University of Science and Technology, 2014
钟显康. 薄液膜下锡的腐蚀和电化学迁移行为及机理 [D]. 武汉: 华中科技大学, 2014
15 Zhong X K, Zhang G A, Qiu Y B, et al. In situ study the dependence of electrochemical migration of tin on chloride [J]. Electrochem. Commun., 2013, 27: 63
doi: 10.1016/j.elecom.2012.11.010
16 Zhang L, Wang Z Y, Zhao C Y, et al. Corrosion behavior of Q235 steel and weathering steel in simulated marine industry atmosphere [J]. Mater. Protect., 2015, 48(2): 19
张琳, 王振尧, 赵春英 等. 模拟海洋工业大气环境中Q235钢及耐候钢的腐蚀行为 [J]. 材料保护, 2015, 48(2): 19
17 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
郭明晓, 潘晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
18 Li K. Study on the corrosion mechanism of pure copper in the presence of ammonium sulfate [D]. Beijing: University of Chinese Academy of Sciences, 2018
李坤. 硫酸铵对纯铜腐蚀过程影响机理的研究 [D]. 北京: 中国科学院大学, 2018
19 Fan Y M, Liu W, Li S M, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39: 190
doi: 10.1016/j.jmst.2019.07.054
20 Wang M N, Qiao C, Jiang X L, et al. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51: 40
doi: 10.1016/j.jmst.2020.03.024
21 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
胡玉婷, 董鹏飞, 蒋立 等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
22 Qi D M, Cheng R Y, Du X Q, et al. Review on atmospheric corrosion of copper and copper alloys [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 389
齐东梅, 成若义, 杜小青 等. Cu及其合金的大气腐蚀研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 389
23 Liu Y W, Wang Z Y, Cao G W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment [J]. Mater. Chem. Phys., 2017, 198: 243
doi: 10.1016/j.matchemphys.2017.05.043
24 Pan C, Lv W Y, Wang Z Y, et al. Atmospheric corrosion of copper exposed in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2017, 33: 587
doi: 10.1016/j.jmst.2016.03.024
25 Hao L, Zhang S X, Dong J H, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2012, 59: 270
doi: 10.1016/j.corsci.2012.03.010
26 Schindelholz E J, Cong H, Jove-Colon C F, et al. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride [J]. Electrochim. Acta, 2018, 276: 194
doi: 10.1016/j.electacta.2018.04.184
27 Wan S, Ma X Z, Miao C H, et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance [J]. Corros. Sci., 2020, 170: 108692
doi: 10.1016/j.corsci.2020.108692
28 Chen Z Y, Zakipour S, Persson D, et al. Effect of sodium chloride particles on the atmospheric corrosion of pure copper [J]. Corrosion, 2004, 60: 479
doi: 10.5006/1.3299244
29 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. The effect of submicron ammonium sulfate particles on the corrosion of copper [J]. J. Electrochem. Soc., 1993, 140: 1902
doi: 10.1149/1.2220736
30 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373 K [J]. J. Electrochem. Soc., 1994, 141: 2935
doi: 10.1149/1.2059261
31 Wan S, Hou J, Zhang Z F, et al. Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor [J]. Corros. Sci., 2019, 150: 246
doi: 10.1016/j.corsci.2019.02.008
32 Wan S, Dong Z H, Guo X P. Investigation on initial atmospheric corrosion of copper and inhibition performance of 2-phenyl imidazoline based on electrical resistance sensors [J]. Mater. Chem. Phys., 2021, 262: 124321
doi: 10.1016/j.matchemphys.2021.124321
33 Qiao C, Wang M N, Hao L, et al. In-situ EIS study on the initial corrosion evolution behavior of SAC305 solder alloy covered with NaCl solution [J]. J. Alloy. Compd., 2021, 852: 156953
doi: 10.1016/j.jallcom.2020.156953
34 Qu Q, Li L, Bai W, et al. Initial atmospheric corrosion of zinc in presence of Na2SO4 and (NH4)2SO4 [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 887
doi: 10.1016/S1003-6326(06)60345-2
35 Qu Q, Li L, Bai W, et al. Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2005, 47: 2832
doi: 10.1016/j.corsci.2004.11.010
36 Wadsak M, Schreiner M, Aastrup T, et al. Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM [J]. Surf. Sci., 2000, 454-456: 246
doi: 10.1016/S0039-6028(00)00081-9
37 Wiesinger R, Schreiner M, Kleber C. Investigations of the interactions of CO2, O3 and UV light with silver surfaces by in situ IRRAS/QCM and ex situ TOF-SIMS [J]. Appl. Surf. Sci., 2010, 256: 2735
doi: 10.1016/j.apsusc.2009.11.019
[1] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[2] SUN Xiaoguang, WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing. On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
[3] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[4] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[5] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[6] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[7] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[8] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
No Suggested Reading articles found!