Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 376-382    DOI: 10.11902/1005.4537.2020.058
Current Issue | Archive | Adv Search |
Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution
CHEN Wen1(), HUANG Dexing1, WEI Feng2
1.Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China
2.Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, China
Download:  HTML  PDF(3518KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition effect of brainea insignis extract (BIE) on the corrosion of Q235 steel in HCl solution was investigated by means of mass loss measurement, polarization curve measurement and electrochemical impedance spectroscopy. The results showed that BIE could effectively inhibit the carbon steel corrosion in HCl solution, as the BIE concentration was up to 560 mg·L-1, the corrosion rate of Q235 steel decreased to 1.125 g·m-2·h-1, namely the corrosion inhibition efficiency reached 94.3%. Electrochemical analysis shows that the BIE extract suppressed mainly the cathodic corrosion reaction. With the increasing concentration of BIE extract, the charge transfer process on the metal surface was hindered increasingly, resulting in enhanced corrosion inhibition performance. The highest corrosion inhibition efficiencies calculated from the fitting of polarization curves and electrochemical impedance spectroscopy were 95.8% and 95.3%, respectively, which were in agreement with the result of mass loss measurement. The adsorption action of BIE molecules on the steel surface followed Langmuir, Temkin adsorption isotherms and the EI-Awady thermodynamic-kinetic model, and belonged to heterogeneous adsorption, whilst there should exist lateral interaction forces between the adsorbed organic molecules. Spectral analysis and surface morphology observations confirmed the existance of the adsorption action and corrosion inhibition of the extract molecules, respectively.

Key words:  Q235 steel      HCl      plant extractive      adsorption      corrosion inhibition     
Received:  04 April 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51361001)
Corresponding Authors:  CHEN Wen     E-mail:  chenw@cxtc.edu.cn
About author:  CHEN Wen, E-mail: chenw@cxtc.edu.cn

Cite this article: 

CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 376-382.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.058     OR     https://www.jcscp.org/EN/Y2021/V41/I3/376

Table 1  Phytochemical tested main components in the Brainea insignis extractive
Fig.1  FTIR spectra of the Brainea insignis extractive and its adsorption film on Q235 steel
Fig.2  XPS spectra for the adsorption film of BIE on Q235 steel: (a) full scanned spectrum, fine spectra of (b) C1s, (c) O1s and (d) Fe2p3/2
Fig.3  Corrosion rate and inhibition efficiency for Q235 steel in 1 mol·L-1 HCl solution containing various concentrations of BIE
Fig.4  Polarization curves for Q235 steel in 1 mol·L-1 HCl solution containing various concentrations of BIE
CBIE / mg·L-1-Ecorr / mVVS SCEba / mV·dec-1bc / mV·dec-1Icorr / μA·cm-2IEPC / %
Blank4721061372209---
354668113583162.4
704667812954375.4
1404727411639582.1
2804836212213394.0
560471601139295.8
Table 2  Polarization parameters for Q235 steel in 1 mol·L-1 HCl solution containing different concentrations of BIE
Fig.5  Nyquist plots for Q235 steel in 1 mol·L-1 HCl solution containing various concentrations of BIE
Fig.6  Equivalent circuit mode for fitting the date of EIS
CBIE / mg·L-1Rs / Ω·cm2Rct / Ω·cm2CPEdlCdl / μF·cm-2IEEIS / %
Y0×106 / Ω-1·cm-2·snn
Blank1.839.64740.846178---
351.9036.33060.84313273.4
701.9952.82940.81111281.7
1401.9187.12100.8439988.9
2801.87138.41050.8846193.0
5602.50209.3690.8894195.3
Table 3  Fitting impedance parameters for Q235 steel in 1 mol·L-1 HCl containing different concentrations of BIE
Fig.7  Fitting results on the basis of Langmuir (a) and Temkin (b) adsorption isotherms, and El-Awady thermodynamic-kinetic mode (c)
Fig.8  SEM (a, b) and CLSM (c, d) images of Q235 steel after immersion for 6 h in 1 mol·L-1 HCl solution without (a, c) and with (b, d) BIE
1 Zheng J, Wang Y N, Zhang B L, et al. Research progress on natural products as corrosion inhibitor in acid, neutral and alkaline mediums [J]. Corros. Sci. Prot. Technol., 2011, 23: 103
郑杰, 王亚娜, 章柏林等. 酸性、中性、碱性介质中植物型缓蚀剂的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 103
2 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
3 Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution [J]. J. Ind. Eng. Chem., 2018, 58: 92
4 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
5 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
6 Casaletto M P, Figà V, Privitera A, et al. Inhibition of Cor-Ten steel corrosion by “green” extracts of Brassica campestris [J]. Corros. Sci., 2018, 136: 91
7 Fang Y S, Yang Y B, Yang M H, et al. Chemical constituents from the fern Brainea insignis (Blechnaceae) [J]. Acta Bot. Yunnanica, 2008, 30: 725
方云山, 杨亚滨, 杨明惠等. 苏铁蕨的化学成分 [J]. 云南植物研究, 2008, 30: 725
8 Wu P, Xie H H, Tao W Q, et al. Phytoecdysteroids from the rhizomes of Brainea insignis [J]. Phytochemistry, 2010, 71: 975
9 Fan Y M, Tao W Q, Gao S Z, et al. Purification and analysis of the Brainia insignis (Hook.) J. Sm. polysaccharides [J]. J. Guangzhou Univ. (Nat. Sci. Ed.), 2008, 7(6): 46
樊亚鸣, 陶文琴, 高绍中等. 苏铁蕨多糖的提取及其组分分析 [J]. 广州大学学报 (自然科学版), 2008, 7(6): 46
10 Liu Y C. Chemical composition and antioxidant activity of fern Brainea insignis [J]. Yunnan Agric., 2016, (12): 46
刘艳春. 苏铁蕨的化学成分与抗氧化活性研究 [J]. 云南农业, 2016, (12): 46
11 Morales-Gil P, Walczak M S, Cottis R A, et al. Corrosion inhibitor binding in an acidic medium: Interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid [J]. Corros. Sci., 2014, 85: 109
12 Frateur I, Lartundo-Rojas L, Méthivier C, et al. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium alloy [J]. Electrochim. Acta, 2006, 51: 1550
13 Chauhan L R, Gunasekaran G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium [J]. Corros. Sci., 2007, 49: 1143
14 Asami K, Hashimoto K, Shimodaira S. X-ray photoelectron spectrum of Fe2+ state in iron oxides [J]. Corros. Sci., 1976, 16: 35
15 Shimura T, Aramaki K. Additional modification to two-dimensional polymer films of a hydroxymethylbenzene self-assembled monolayer with alkyltriethoxysilanes for enhancing the protective abilities against iron corrosion [J]. Corros. Sci., 2008, 50: 596
16 Liu B Y, Xi H X, Li Z, et al. Adsorption and corrosion-inhibiting effect of 2-(2-{[2-(4-Pyridylcarbonyl) hydrazono]methyl}phenoxy) acetic acid on mild steel surface in seawater [J]. Appl. Surf. Sci., 2012, 258: 6679
17 Liu X H, Han J, Sun C Y, et al. Mechanism of tungstate compound inhibitor in sea water with XPS and EDS [J]. Surf. Technol., 2011, 40(3): 52
柳鑫华, 韩婕, 孙彩云等. 用XPS及EDS能谱研究钨酸盐复合缓蚀剂在天然海水中的缓蚀机理 [J]. 表面技术, 2011, 40(3): 52
18 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
19 Abd El-Lateef H M. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions [J]. Corros. Sci., 2015, 92: 104
20 Popova A, Raicheva S, Sokolova E, et al. Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Langmuir, 1996, 12: 2083
21 Ateya B G, El-Anadouli B E, El-Nizamy F M. The adsorption of thiourea on mild steel [J]. Corros. Sci., 1984, 24: 509
22 Rahal H T, Abdel-Gaber A M, Younes G O. Inhibition of steel corrosion in nitric acid by sulfur containing compounds [J]. Chem. Eng. Commun., 2016, 203: 435
23 Şahın M, Bılgıç S. The effect of crotyl alcohol on the corrosion of austenitic chromium-nickel steel [J]. Appl. Surf. Sci., 1999, 147: 27
24 Umoren S A, Ebenso E E. The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4 [J]. Mater. Chem. Phys., 2007, 106: 387
[1] WANG Lizi, LI Xianghong. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[5] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[6] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[10] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[11] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[12] Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[13] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[14] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[15] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
No Suggested Reading articles found!