Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 421-426    DOI: 10.11902/1005.4537.2015.207
Orginal Article Current Issue | Archive | Adv Search |
Electrochemical Performance of Al-Mg-Sn-Ga Aluminum Anode Alloy
Jingling MA1,2(),Fengzhang REN1,Guangxin WANG1,2,Yi XIONG1,Jiuba WEN1
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, China
Download:  HTML  PDF(2285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this research, Al-air battery based on Al-0.5Mg-0.1Sn-0.05Ga (mass fraction, %) anodes were set up, and then the electrochemical performance of the alloy, including the as-cast one and the deformed one with 40% reduction, was investigated in 2 mol/L NaCl and 4 mol/L NaOH solutions. The results show that the deformation process can increase the electrochemical activity, while decrease the free-corrosion rate of the alloy. This may be partially ascribed to the grain refinement induced by deformation process. The morphology observation of the alloy after discharge and the measured electrochemical impedance spectroscopy of the alloy proved the corrosion characteristics fairly well. In comparison, the working voltage and the anodic utilization rate of the deformed Al-0.5Mg-0.1Sn-0.05Ga alloy in 2 mol/L NaCl solution are higher than those of Zn in 4 mol/L NaOH solution.

Key words:  aluminum alloy      air battery      deformation      self-corrosion     

Cite this article: 

Jingling MA,Fengzhang REN,Guangxin WANG,Yi XIONG,Jiuba WEN. Electrochemical Performance of Al-Mg-Sn-Ga Aluminum Anode Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 421-426.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.207     OR     https://www.jcscp.org/EN/Y2016/V36/I5/421

Fig.1  Potentiodynamic polarization curves of as-cast and deformation Al-0.5Mg-0.1Sn-0.05Ga alloy and Zn in 2 mol/L NaCl and 4 mol/L NaOH respectively (a) and in 4 mol/L NaOH (b) solutions
Material Solution Ecorr (Hg/HgO)V IcorrmAcm-2 RpΩcm2 Corrosion rate mgcm-2h-1
Al-Mg-Sn-Ga Cast 2 mol/L NaCl -1.40 0.76 67.9 6.27×10-3
Deformation 2 mol/L NaCl -1.43 0.28 106.9 5.63×10-3
Cast 4 mol/L NaOH -1.84 21.25 2.1 62.16
Deformation 4 mol/L NaOH -1.82 10.87 4.1 57.28
Zn Cast 4 mol/L NaOH -1.42 0.45 48.0 11.65
Table 1  Corrosion parameters of as-cast and deformation Al-0.5Mg-0.1Sn-0.05Ga alloy in 2 mol/L NaCl, 4 mol/L NaOH solutions, and Zn in 4 mol/L NaOH solution
Fig.2  Discharge curves of metal-air batteries based on as-cast and 40% deformation Al-0.5Mg-0.1Sn-0.05Ga anodes in 2 mol/L NaCl, 4 mol/L NaOH solutions and on Zn in 4 mol/L NaOH solution at 20 mAcm-2 for 5 h
Material Solution Operating voltage / V Anodic utilization / %
Al-Mg-Sn-Ga Cast 2 mol/L NaCl 1.13 67.8
Deformation 2 mol/L NaCl 1.16 68.9
Cast 4 mol/L NaOH 1.18 22.9
Deformation 4 mol/L NaOH 1.37 25.1
Zn Cast 4 mol/L NaOH 1.01 19.7
Table 2  Discharge performances of metal-air batteries with different anodes
Fig.3  Corrosion micrographs of as-cast (a, c) and deformed (b, d) Al-0.5Mg-0.1Sn-0.05Ga alloy after discharg in 2 mol/L NaCl (a, b) and 4 mol/L NaOH (c, d) solutions and Zn in 4 mol/L NaOH solution (e)
Fig.4  Measured and fitted EIS curves of Al-0.5Mg-0.1Sn-0.05Ga alloy and Zn in 2 mol/L NaCl (a) and 4 mol/L NaOH (b) solutions
Fig.5  Equivalent circuits of as-cast and deformation Al-0.5Mg-0.1Sn-0.05Ga alloy in 2 mol/L NaCl (a) and 4 mol/L NaOH (b) solutions, and Zn in 4 mol/L NaOH solution (b)
Anode Solution L10-7 Hcm2 RsΩcm2 CPE110-4 Fcm-2 n10<n<1 RtΩcm2 CPE210-3 Fcm-2 n20<n<1 R2Ωcm2 L110-3 Hcm2 R1Ωcm2 x2
Al alloy cast 2 mol/L NaCl --- 7.86 30.35 0.84 930 4.25 0.80 64 --- --- 1.48×10-3
Al alloy deformation 2 mol/L NaCl --- 5.38 43.69 0.90 451 0.47 0.61 152 --- --- 5.23×10-4
Al alloy cast 4 mol/L NaOH 10.88 2.93 85.87 0.80 0.36 --- --- --- 29.13 0.06 5.97×10-5
Al alloy deformation 4 mol/L NaOH 11.73 1.65 56.71 0.35 1×10-7 --- --- --- 48.08 0.10 7.37×10-5
Zn 4 mol/L NaOH 11.99 1.87 81.09 0.60 4.43 --- --- --- 22.78 1.55 1.41×10-3
Table 3  EIS simulated values of as-casted and deformation Al-0.5Mg-0.1Sn-0.05Ga alloy and Zn
[1] Nestoridi M, Pletcher D, Wood R J K, et al. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes[J]. J. Power Sources, 2008, 178: 445
[2] Egan D R, Ponce C, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminiumeair batteries[J]. J. Power Sources, 2013, 236: 293
[3] Lee S M, Kim Y J, Eoma S W, et al.Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density[J]. J. Power Sources, 2013, 227: 177
[4] Wu G M, Yang C C.Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes[J]. J. Membr. Sci., 2006, 280: 802
[5] Moore K L, Sykes J M, Grant P S.An electrochemical study of repassivation of aluminium alloys with SEM examination of the pit interiors using resin replicas[J]. Corros. Sci., 2008, 50: 3233
[6] Gudic S, Smoljko I, Kli?kic M.Cathodic breakdown of anodic oxide film on Al and Al-Sn alloys in NaCl solution[J]. Electrochim. Acta, 2005, 50: 5624
[7] Li Q, Bjerrum J.Aluminum as anode for energy storage and conversion: A review[J]. J. Power Sources, 2002, 110: 1
[8] Flamini D O, Saidman S B, Bessone J B.Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process[J]. Thin Solid Films, 2007, 515: 7880
[9] Gudic S, Smoljko I, Kliskic M.Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution[J]. Mater. Chem. Phys., 2010, 121: 561
[10] Ghali E.Corrosion Resistance of Aluminum and Magnesium Alloys. Understanding, Performance and Testing[M]. Denver: Wiley, 2010
[11] Brunner J G, May J, H?ppel H W, et al.Localized corrosion of ultrafine-grained Al-Mg model alloys[J]. Electrochim. Acta, 2010, 55: 1966
[12] Lin C J, Shih H C.Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment[J]. J. Electrochem. Soc., 1987, 134:817
[13] Zhang Y, Liang S Q, Athar J, et al.Effect of pass deformation on microstructure, corrosion and electrochemical properties of aluminum alloy anodes for alkaline aluminum fuel cell applications[J]. Met. Mater. Int., 2013, 19: 555
[14] Liang S Q, Zhang Y, Guan D K, et al.Effect of rolling processing on microstructure and electrochemical properties of high active aluminum alloy anode[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 942
[15] Cao C N.Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2007
[15] (曹楚南. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2007)
[16] Osório W R, Freitas E S, Garcia A.EIS parameters and cell spacings of an Al-Bi alloy in NaCl solution[J]. Electrochim. Acta, 2013, 108: 781
[17] Mansfeld F.Models for the impedance behavior of protective coatings and cases of localized corrosion[J]. Electrochim. Acta, 1993, 38: 1891
[1] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[3] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[4] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[5] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[6] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[7] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[8] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[10] Herong ZHOU,Bihua HU,Wang YAO,Xinpei HONG,Shupeng SONG. Atmospheric Corrosion of Anodized Pure Al 1060, Al-alloys 2A12 and 7A04 Exposed to Polluted Atmospheric Environment at Jiangjin Region[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[11] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[12] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[13] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] Feng ZHAO, Fayun LU, Nan MU, Fuan GUO, Li ZHANG. Relations between Microstructure and Exfoliation Corrosion Resistance of 7050 Al-alloy[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
[15] Bo JI,Xinming ZHANG,Zhuofu ZHANG,Lingying YE,Wenjian LI. Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
No Suggested Reading articles found!