Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 53-58    DOI: 10.11902/1005.4537.2013.045
Current Issue | Archive | Adv Search |
Atmospheric Corrosion Behavior of P265GH Steel and Q235 Steel under Dry/Humid/Immersion Alternative Condition
WANG Zhenyao1(), YU Quancheng1, CHEN Junjun2, WANG Jun2, XU Song2, HU Botao2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
Download:  HTML  PDF(4125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of P265GH low alloy steel and Q235 carbon steel under dry/humid/immersion alternative condition with NaCl and NaHSO3 were investigated by SEM, XRD, FTIR and mass loss analysis. The results show that, the relationship of mass loss to test time for the two steels fits to the same dynamics law. The corrosion products contain a large amount of dense α-FeOOH and amorphous δ-FeOOH. The resistance of rust layer make corrosion rate of the two steels decrease. The mass loss of the two steels is almost the same in the beginning stage, the difference of the mass loss become large with test time. The P265GH low alloy steel exhibited lower mass loss, denser rust layer, and better corrosion resistance rather than Q235 carbon steel.

Key words:  steel      atmospheric corrosion      accelerated corrosion test      corrosion product analysis     
Received:  12 April 2013     
ZTFLH:  TG172.4  

Cite this article: 

WANG Zhenyao, YU Quancheng, CHEN Junjun, WANG Jun, XU Song, HU Botao. Atmospheric Corrosion Behavior of P265GH Steel and Q235 Steel under Dry/Humid/Immersion Alternative Condition. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 53-58.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.045     OR     https://www.jcscp.org/EN/Y2014/V34/I1/53

Steel C Si Mn S P Al Cu Cr Ni Ti Mo Nb V Fe
Q235 0.18 0.25 0.5 0.018 0.016 --- --- --- --- --- --- --- --- Bal.
P265GH 0.13 0.18 0.73 0.01 0.011 0.045 0.03 0.02 0.01 0.001 0.004 0.002 0.002 Bal.
表1  Q235钢和P265GH钢的主要化学成分
Fig.1  Curves of mass loss vs time for P265GH low alloy steel and Q235 carbon steel
Fig.2  XRD spectra of corrosion products of P265GH steel (a) and Q235 steel (b) corroded for various time
Fig.3  IR spectra of corrosion products of P265GH steel (a) and Q235 steel (b) corroded for different times
Fig.4  Images of P265GH steel (a~c) and Q235 steel (d~f) samples after corroded under cyclic dry/wet condition for 6 h (a, d), 48 h (b, e) and 192 h (c, f)
Fig.5  SEM images of P265GH steel (a~c) and Q235 steel (d~f) samples after corroded under cyclic dry/wet condition for 6 h (a, d), 48 h (b, e) and 192 h (c, f)
Fig.6  Cross-sectional morphologies of rust layers of P265GH steel (a) and Q235 steel (b) corroded under dry/wet alternative condition for 192 h
Position O S Cl Fe Mn
A 40.53 1.80 0.18 57.48 ---
B 34.75 0.66 --- 64.60 ---
C 35.84 0.18 0.12 63.85 ---
D 34.46 0.27 0.17 65.10 ---
E 41.01 0.36 0.03 58.21 0.40
F 40.50 0.16 0.29 58.95 0.10
G 39.62 1.81 0.17 58.40 ---
H 37.16 0.42 0.12 62.30 ---
Table 2  Elements analysis for rusts at the positions marked in Fig.6 for Q235 steel and P265GH steel corroded for 192 h(mass fraction / %)
[1] Liang C F. Atmospheric corrosion of steels in China[J]. J. Electrochem., 2001, 7(2): 215-219
(梁彩凤. 钢在中国大陆的大气腐蚀研究[J]. 电化学, 2001, 7(2): 215-219)
[2] Zhang A F. Influence factors of atmospheric corrosion for iron and steel[J]. Mater. Prot., 1989, 22(2): 15-16
(张安富. 影响钢铁大气腐蚀的因素[J], 材料保护, 1989, 22(2): 15-16)
[3] Singh D N, Shyamjeet Y, Saha J K. Role of climatic conditions on corrosion characteristics of structural steels[J]. Corros. Sci., 2008, 50(1): 93-110
[4] Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia[J]. Corros. Sci., 2009, 52(3): 216-223
[5] Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112(9): 844-852
[6] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51(10): 997-1006
[7] Chen H L, Wei Y. Mechanism of industrial atmospheric corrosion for carbon steel[J]. Corros. Prot., 2006, 27(6): 284-286
(陈惠玲, 魏雨. 碳钢在含SO2环境大气中腐蚀机理的研究[J]. 腐蚀与防护, 2006, 27(6): 284-286
[8] Qu Q, Yan C W, Cao C N. Atmospheric corrosion of A3 steel polluted by NaCl in SO2 environment[J]. Corros. Sci. Prot. Technol., 2001, 13(S1): 432-437
(曲庆, 严川伟, 曹楚南. NaCl污染的A3钢在含SO2的大气环境中的腐蚀[J]. 腐蚀科学与防护技术, 2001, 13(S1): 432-437)
[9] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14(3): 279-289
[10] Kassim J, Baird T, Fryer J R. Electron microscope studies of iron corrosion products in water at room temperature[J]. Corros. Sci., 1982, 22(2): 147-158
[11] Ishikawa T, Kumagai M, Yasukawa A, et al. Characterization of rust on weathering steel by gas adsorption[J]. Corrosion, 2001, 57(4): 346-352
[1] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[3] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[4] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[5] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[6] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[7] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[8] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[10] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[11] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[12] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[13] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[14] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!