Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 59-64    DOI: 10.11902/1005.4537.2013.050
Current Issue | Archive | Adv Search |
Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments
XING Yunying, LIU Zhiyong(), DONG Chaofang, LI Xiaogang
Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(3250KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress corrosion behavior of the weld seam and base metal of 16MnR steel in solution of HNO3-H2SO4-H2O, one of the typical environments of FCCU regenerator, was investigated using U-bend specimen immersion test and electrochemical polarization curves. The results show that the weld seam of 16MnR is more sensitive to nitrate stress corrosion cracking than base metal, its mechanism is anodic dissolution. Both the introduction of sulfate and the slightly reduction of pH can destroy the protective film on 16MnR steel, and increase the corrosion susceptibility of its weld seam. However, when the pH of solution is less than 2, the material is in active state, resulting in a serious of uniform corrosion. Besides the effective methods to slow down the stress corrosion of materials in catalytic cracking regenerator are analyzed in this article.

Key words:  catalytic cracking      dew-point      16MnR      weld seam      stress corrosion     
Received:  06 June 2013     
ZTFLH:  TG172.6  
About author:  null

邢云颖,1988年生,女,硕士生,研究方向为材料的腐蚀与防护

Cite this article: 

XING Yunying, LIU Zhiyong, DONG Chaofang, LI Xiaogang. Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 59-64.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.050     OR     https://www.jcscp.org/EN/Y2014/V34/I1/59

Material C Mn Si S P
Base 0.150 1.46 0.35 0.0097 0.014
Weld 0.071 1.24 0.39 0.0070 0.009
表1  16MnR钢基材及焊接接头的化学成分
Fig.1  Microstructures of 16MnR steel weld joint: (a) weld material, (b) base material
Fig.2  Global view of the SCC experimental device in the simulation environment of FUCC regeneration
Fig.3  Macroscopic morphologies of the corroded samples (a) and stress corrosion cracks (b)
Fig.4  Microstructures of cracks on the specimen surface after stress corrosion (a) and its magnified image (b)
Temperature
oC
NO2 and SO3 Cracking time / h
flow (volume) Sample 1 Sample 2 Sample 3
ratio Weld Base Weld Base Weld Base
70 100∶0 76 No cracking 68 No cracking 80 None
100∶1 44 No cracking 76 No cracking 76 None
100∶2 44 No cracking 48 No cracking 76 None
100∶5 60 No cracking No cracking No cracking No cracking None
90 100∶0 --- --- --- --- --- ---
100∶1 44 No cracking 44 No cracking 48 None
100∶2 336(1) No cracking No cracking No cracking No cracking None
100∶5 336(1) No cracking No cracking No cracking No cracking None
表2  16MnR钢基材和焊接接头在70和90℃硝酸铵溶液中的开裂时间
Fig.5  Polarization curves of the 16MnR substrate (a) and weld joint (b) in the different solutions at 70 ℃
Fig.6  Influence of the temperature on the polarization behavior of 16MnR steel weld joint in 10%NH4NO3 solution
[1] Fu C H, Si Y X. Analysis of root causes of equipment cracking in FCCU regenerator system and counter measures[J]. Corros. Prot. Petrochem. Ind., 2010, 27(6): 31-64
(付春辉, 司元祥. 催化裂化装置再生系统应力腐蚀开裂原因[J]. 石油化工腐蚀与防护, 2010, 27(6): 31-64)
[2] Parkins R N. Mechanical aspect of stress corrosion cracking of carbon steels in petroleum refining industry [A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 526-533
[3] Gu Y Z. Prevention of stress corrosion cracking (SCC) of equipment in FCCU regeneration system[J]. Corros. Prot. Petrochem. Ind., 2010, 27(5): 17-19
(顾月章. 催化裂化再生系统应力腐蚀开裂的预防[J]. 石油化工腐蚀与防护, 2010, 27(5): 17-19)
[4] Galvele J R. Recent developments in the surface-mobility stress-corrosion-cracking mechanism[J]. Electrochim. Acta, 2000, 45(21): 3537-3541
[5] Pollard R E. Symposium stress corrosion cracking of metals[J]. ASTM, 1944: 443-450
[6] Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 63-65
(张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展[J]. 腐蚀科学与防护技术, 2009, 21(1): 63-65)
[7] Wu Y S. SCC diagram for low alloy steel-nitrate aqueous solution system[J]. J. Univ. Sci. Technol. Beijing, 1990, 12(2): 131-136
(吴荫顺. 低合金钢-硝酸盐溶液体系SCC图[J]. 北京科技大学学报, 1990, 12(2): 131-136)
[8] Parkins R N. Mechanism and characteristic of stress corrosion cracking[A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 531-542
[9] Du A H, Long J M, Pei Z H, et al. Investigation of stress corrosion cracking of 7xxx series aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2008, 28(4): 251-256
(杜爱华, 龙晋明, 裴中和等. 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256)
[10] Rossenhain G D, Lockington N A. Research of stress corrosion cracking[J]. Corrosion, 1990, 5: 167-169
[11] Meng Q, Yan H, Huang W, et al. Corrosion and protection of catalytic cracking unit[J]. Fine Chem. Intermed., 2011, 41(1): 8-10
(孟邱, 闫慧, 黄炜等. 催化裂化装置的腐蚀与防护[J]. 精细化工中间体, 2011, 41(1): 8-10)
[12] Li X G, Chen H, Dong C F. Thermal healing of hydrogen attacked cracks in steels [A]. The 2nd China International Corrosion Control Conference [C]. Beijing, 2002: 41-49
[13] Zhou Z H. Deterrents to long-period operation of catalytic cracking units and solution[J]. Sino-Global. Energy, 2012, 17(6): 73-77
(周志航. 催化裂化装置长周期运行的问题及对策[J]. 中外能源, 2012, 17(6): 73-77)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
No Suggested Reading articles found!