Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 46-52    DOI: 10.11902/1005.4537.2013.038
Current Issue | Archive | Adv Search |
Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well
WANG Feng1,2(), WEI Chunyan3, HUANG Tianjie1,4, CUI Zhongyu5, LI Xiaogang5
1. National Energy CCS-EOR R&D (Experimental) Center, Songyuan 138000, China
2. Key Laboratory for Enhancing Oil Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China
3. Fuyu Oil Production Plant, Jilin Oil Field Company, Songyuan 138003, China
4. Oil Production Technology Institute, Jilin Oil Field Company, Songyuan 138003, China
5. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(3095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical characteristics and stress corrosion cracking (SCC) behavior of 13Cr stainless steel were investigated by electrochemical measurements, U-bent specimen immersion test and surface analysis technique in an artificial solution with an autoclave, which aimed to simulate the annulus environment around CO2 injection well. The results showed that annulus solution around injection well was a complicated H2S-CO2-Cl- environment which generated the SCC of 13Cr stainless steel. The pitting breakthrough potential and SCC resistance of 13Cr stainless steel decreased obviously with increasing H2S partial pressure, which is associated with the deterioration of surface film (passive film and corrosion products scales) on the steel. When the H2S partial pressure exceeded 0.20 MPa (including 0.20), SCC occurred on 13Cr steel. Typical transgranular and intergranular fracture morphologies were observed, which indicated that the SCC process was mixed-controlled by both anodic dissolution and hydrogen-induced cracking.

Key words:  13Cr stainless steel      H2S/CO2      stress corrosion cracking      H2S partial pressure     
Received:  24 April 2013     
ZTFLH:  TG172  

Cite this article: 

WANG Feng, WEI Chunyan, HUANG Tianjie, CUI Zhongyu, LI Xiaogang. Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 46-52.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.038     OR     https://www.jcscp.org/EN/Y2014/V34/I1/46

Fig.1  Optical micrograph of 13Cr stainless steel
Condition Temperarure / ℃ pH Corrosion
inhibitor
CO2 partial
pressure / MPa
Total
pressure / MPa
H2S partial
pressure / MPa
P C O 2 / P H 2 S
1 25 4.0 1×10-3 4.0 9.0 0 ---
2 25 4.0 1×10-3 4.0 9.0 0.05 80
3 25 4.0 1×10-3 4.0 9.0 0.10 40
4 25 4.0 1×10-3 4.0 9.0 0.20 20
5 25 4.0 1×10-3 4.0 9.0 0.30 13.3
Table 1  Test conditions of electrochemical measurements of 13Cr stainless steel
Fig.2  Polarization curves of 13Cr stainless steel under different H2S partial pressures
Fig.3  EIS of 13Cr stainless steel under different H2S partial pressures

(a) Nyquist diagram, (b) equivalent circuit

H2S partial
pressure / MPa
Rs / Ωcm2 Qf / μFcm-2 n1 Rf / Ωcm2 CPEdl / μFcm-2 n2 Rct / Ωcm2
0 18.45 8.79×10-5 0.91 9.51×104 2.97×10-4 0.99 4.40×104
0.05 16.66 1.20×10-4 0.862 7.54×104 5.50×10-4 1 2.40×104
0.10 18.12 2.00×10-5 1 10.18 8.30×10-5 0.817 5.13×104
0.20 16.78 1.95×10-5 1 7.9 1.01×10-4 0.814 3.60×104
0.30 18.45 6.30×10-5 0.623 568.4 4.89×10-5 0.867 3.58×104
Table 2  Fitted electrochemical parameters for EIS of 13Cr stainless steel under different H2S partial pressures
Fig.4  Variation of Rp, ipass and Rf with increasing H2S partial pressure
Fig.5  Macroscopic morphologies of 13Cr stainless steel U-bent specimen after immersion test:

(a) P H 2 S =0 MPa, (b) P H 2 S =0.10 MPa, (c) P H 2 S =0.20 MPa, (d) P H 2 S =0.30 MPa

Fig.6  Variation of failure time of 13Cr stainless steel with increasing H2S partial pressure
Fig.7  SEM fractographs of U-bent specimen of 13Cr stainless steel under different H2S partial pressures

(a, b) P H 2 S =0.20 MPa, (c, d) P H 2 S =0.30 MPa

[1] Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel[J]. Total Corros. Control, 2011, 25(4): 16-20
(张国超, 林冠发, 孙育禄等. 13Cr不锈钢腐蚀性能的研究现状与进展[J]. 全面腐蚀控制, 2011, 25(4): 16-20)
[2] Lin G F, Gu X Y, Bai Z Q, et al. Spectrum analysis of CO2 corrosion products on 13Cr tubing steel [A]. Seventh National Conference on Surface Engineering [C]. Wuhan, 2008: 335-340
(林冠发, 骨勋源, 白真权等. 13Cr油管钢CO2腐蚀产物膜的能谱分析 [A]. 第七届全国表面工程学术会议 [C]. 武汉, 2008: 335-340
[3] Chen Y,Bai Z Q,Lin G F. CO2 corrosion resistance of common 13Cr steel under high temperature and high pressure [J]. Total Corros. Control, 2007, 21(2): 11-14
(陈尧, 白真权, 林冠发. 普通13Cr钢在高温高压下的抗CO2腐蚀性能[J]. 全面腐蚀控制, 2007, 21(2): 11-14
[4] Dong X H, Zhao G X, Feng Y R, et al. Study of CO2 corrosion behavior of 13Cr steel[J]. Oil Field Equip., 2003, 32(6): 1-3
(董晓焕, 赵国仙, 冯耀荣等. 13Cr不锈钢的CO2腐蚀行为研究[J]. 石油矿场机械, 2003, 32(6): 1-3)
[5] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment[J]. Mater. Lett., 2009, 59(27): 3370-3374
[6] Ikeda A, Mukai S, Ueda M. Corrosion behavior of 9 to 25% Cr steels in wet CO2 environments[J]. Corrosion, 1985, 41(4): 185-192
[7] Mancia A. The effect of environmental modification on the sulphide stress corrosion cracking resistance of 13Cr martensitic stainless steel in H2S-CO2-Cl- systerms[J]. Corros. Sci., 1987, 27(10): 1225-1237
[8] Han Y, Li D D, Lin G F, et al. Corrosion resitance of 13Cr stainless steel in the Cl-, CO2 environment with microamount H2S[J]. Phys. Test. Chem. Anal., 2010, 46(3)A: 145-150
(韩燕, 李道德, 林冠发等. Cl-, CO2和微量H2S共存时13Cr不锈钢的腐蚀性能[J]. 理化检验, 2010, 46(3)A: 145-150)
[9] Zhang Y M, Zang H Y, Dong A H, et al. Corrosion behavior analysis of 13Cr steel oil pipe[J]. Corros. Sci. Prot. Technol., 2009, 21(5): 499-501
(张亚明, 臧晗宇, 董爱华等. 13Cr钢油管腐蚀原因分析[J]. 腐蚀科学与防护技术, 2009, 21(5): 499-501)
[10] Cai R, Zhu S D, Li F G, et al. Corrosion reason analysis of 13Cr tubing steel[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 355-356)
(蔡锐, 朱世东, 李发根等. 某油井管用13Cr油管腐蚀原因分析[J]. 腐蚀科学与防护技术, 2012, 24(4): 355-356)
[11] Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight [M]. London: Springer, 2008
[12] Sardisco J B, Wright W B, Greco E C. Corrosion of iron in an H2S-CO2-Cl- systerm: corrosion film properties on pure iron[J]. Corrosion, 1963, 19(10): 354-359
[13] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions[J]. Electrochim. Acta, 2011, 56(4): 1752-1760
[14] Pots F M, Jhon R C, Rippon I J, et al. Improvements on de-Waard Milliams corrosion prediction and application to corrosion management [A]. Corrosion/2002 [C]. Denver: NACE, 2002: 235
[15] Lv X H, Zhao G X, Wang Y, et al. SCC resistance of super 13Cr martensitic stainless steel[J]. J. Mater. Eng., 2011, (2): 17-25
(吕祥鸿, 赵国仙, 王宇等. 超级13Cr马氏体不锈钢抗SCC性能研究[J]. 材料工程, 2011, (2): 17-25)
[16] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behavior of two stainless steels in hydrogen sulfide environment[J]. J. Univ. Sci. Technol. Beijing, 2009, 31(3): 319-323
(刘智勇, 董超芳, 李晓刚等. 硫化氢环境下两种不锈钢的应力腐蚀开裂行为[J]. 北京科技大学学报, 2009, 31(3): 319-323)
[17] Kermani B, Esaklul K A, Martin J W. Materials design strategy: effects of H2S/CO2 corrosion on materials selection [A]. Corrosion/2006 [C]. San Diego: NACE, 2006: 121
[18] Qiao L, Mao X. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking[J]. Acta Metall. Mater., 1995, 43(11): 4001-4006
[19] Liu Z Y, Dong C F, Li X G, et al. Effect of electrochemical property of UNSJ91450 stainless steel on stress corrosion cracking in hydrogen sulfide solutions[J]. Electrochemistry, 2009, 15(2): 157-162
(刘智勇, 董超芳, 李晓刚等. H2S环境中UNSJ91450不锈钢的电化学行为对SCC的影响[J]. 电化学, 2009, 15(2): 157-162)
[20] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behavior of 35CrMo an 00Cr13Ni5Mo steels in hydrogen sulfide solutions[J]. J. Chem. Ind. Technol., 2008, 59(10): 2561-2567
(刘智勇, 董超芳, 李晓刚等. 35CrMo和00Cr13Ni5Mo硫化氢环境应力腐蚀开裂[J]. 化工学报, 2008, 59(10): 2561-2567)
[21] Zhou C S,Zheng S Q,Chen C F,et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon steel [J]. Corros. Sci., 2013, 67: 184-192
[22] Yang J W, Zhang L, Ding R M, et al. H2S/CO2 corrosion behavior of X60 pipeline steel in wet gas and solution[J]. Acta Metall. Sin., 2008, 44(11): 1366-1371
(杨建炜, 张雷, 丁睿明等. X60管线钢在湿气和溶液介质中的H2S/CO2腐蚀行为[J]. 金属学报, 2008, 44(11): 1366-1371)
[1] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[10] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!