Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1725-1733     CSTR: 32134.14.1005.4537.2025.008      DOI: 10.11902/1005.4537.2025.008
  研究报告 本期目录 | 过刊浏览 |
316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为
李科1(), 李天雷1, 曹晓燕1, 姜流1, 王雅熙1, 肖泽渝2, 钟显康3
1 中国石油工程建设有限公司西南分公司 成都 610041
2 西南石油大学石油与天然气工程学院 成都 610500
3 西安交通大学化学工程与技术学院 西安 710049
Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments
LI Ke1(), LI Tianlei1, CAO Xiaoyan1, JIANG Liu1, WANG Yaxi1, XIAO Zeyu2, ZHONG Xiankang3
1 China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu 610041, China
2 School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
3 School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China
引用本文:

李科, 李天雷, 曹晓燕, 姜流, 王雅熙, 肖泽渝, 钟显康. 316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
Ke LI, Tianlei LI, Xiaoyan CAO, Liu JIANG, Yaxi WANG, Zeyu XIAO, Xiankang ZHONG. Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1725-1733.

全文: PDF(5329 KB)   HTML
摘要: 

316L不锈钢母材具有很好的耐蚀性在含硫天然气净化设备及管道中被广泛使用。但焊缝区和热影响区的耐蚀性能可能较低,存在较高的腐蚀风险。因此,开展316L不锈钢焊接接头的耐蚀性能研究对保障含硫天然气净化设备及管道的运行安全有着重要意义。本文通过失重法、超景深三维扫描显微镜和X射线光电子能谱(XPS)分析技术研究了316L不锈钢母材、焊缝、热影响区在模拟工况下的腐蚀行为。通过XPS技术和Mott-Schottky方法对3种钝化膜的成分和半导体特性进行分析。结果表明:不含H2S时,3种材质无明显的腐蚀,均匀腐蚀速率仅为0.001~0.004 mm/a。含H2S时,其含量越高,腐蚀速率越高;在120 ℃、0.1 MPa H2S的条件下,焊缝、母材、热影响区的均匀腐蚀速率分别为0.316、0.472、0.551 mm/a,局部腐蚀速率分别为86.590、42.757、60.861 mm/a;在90 ℃,1 MPa H2S下,3种材质的均匀腐蚀速率分别为1.136、1.001、0.861 mm/a,局部腐蚀速率分别为125.595、90.297、124.291 mm/a。以上结果表明,焊缝是发生局部腐蚀的高风险区域,其局部腐蚀速率约为母材的1.4~2倍。XPS结果显示,腐蚀产物主要为Fe的硫化物、Fe的氧化物、Cr(OH)3。钝化膜的半导体特性分析显示,焊缝区域的载流子浓度最高,因此该区域的钝化容易遭到破坏,发生局部腐蚀的风险增加。

关键词 焊接接头316L不锈钢XPS局部腐蚀元素硫    
Abstract

316L stainless steel is widely used in the sulfur-containing natural gas purification equipment and pipelines. But, its welded seam and heat-affected zone may pose a higher risk of corrosion, because of their lower resistance of corrosion refer to base material. Therefore, the corrosion resistance of 316L stainless steel in welded joints is crucial to guaranteeing the safe operation of the relevant equipment and pipelines. Herein, the corrosion behavior of the substrate, welded seam, and heat-affected zone of 316L stainless steel in a simulated service condition was investigated using weight loss method, ultra-depth three-dimensional scanning microscopy, and X-ray photoelectron spectroscopy (XPS). The composition and semiconductor properties of the formed passive films were characterized using XPS and the Mott-Schottky method. The results show that, when H2S is free, the steel exhibit very light corrosion, with a general corrosion rate of only 0.001~0.004 mm/a. The content of H2S correlates with the corrosion rate, as the H2S content increases, the corrosion rate also rises; for example, in conditions of 0.1 MPa H2S at 120 oC, the general corrosion rate of the welded seam, base material, and heat-affected zone is 0.316, 0.472, and 0.551 mm/a, respectively, and the localized corrosion rates is 86.590, 42.757, and 60.861 mm/a. At 90 oC and 1 MPa H2S, the general corrosion rate of them is 1.136, 1.001, and 0.861 mm/a, and the localized corrosion rateis 125.595, 90.297, and 124.291 mm/a. These results indicate that the welded seam is a high-risk area for localized corrosion, with the localized corrosion rate is approximately 1.4 to 2 times that of the base material. XPS results revealed that the main corrosion products were iron sulfides, iron oxides, and Cr(OH)3. The analysis of the semiconductor properties of the formed passive films showed that the welded seam had the highest carrier concentration, making the passive film in this region more susceptible to damage, leading to an increased risk of localized corrosion.

Key wordswelded joints    316L stainless steel    XPS    localized corrosion    elemental sulfur
收稿日期: 2025-01-02      32134.14.1005.4537.2025.008
ZTFLH:  TG172  
通讯作者: 李 科,E-mail:like_sw@cnpc.com.cn,研究方向为能源装备腐蚀与防护
Corresponding author: LI Ke, E-mail: like_sw@cnpc.com.cn
作者简介: 李 科,男,1984年生,硕士,高级工程师
Temperature / oCpHH2S pressure / MPaChloride concentration / mg·L-1Time / d
604.50500007
903.5010007
903.5110003
1203.50.110003
表1  模拟工况下的实验条件
图1  不同实验条件下316L不锈钢焊缝(WS)、母材(BM)以及热影响区(HAZ)试样的均匀腐蚀速率
图2  316L不锈钢WS、BM以及HAZ试样在不同条件腐蚀试验后的3D形貌
Temperature oCWelded seamBase materialHeat affected zone
90125.59590.297124.291
12086.59042.75760.861
表2  316L不锈钢焊缝、母材以及热影响区试样在不同实验条件下的局部腐蚀速率 (mm/a)
图3  316L不锈钢WS、BM以及HAZ试样在不同实验条件下的XPS精细谱
Experimental conditionsSpectra

Corrosion

product

Peak

area / %

Experimental

conditions

Spectra

Corrosion

product

Peak

area / %

Welded seam 90 oCFe 2pFeS45.72Welded seam 120 oCFe 2pFeS17.86
pH = 3.5Fe2O336.31pH = 3.5Fe2O325.18
1 MPa H2SFeS217.950.1 MPa H2SFeS256.91
Cl- = 1000 mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate15.56S 2pSulfate
S846.93S888.71
FeS16.46FeS
FeS221.05FeS211.29
Base material 90 oCFe 2pFeS31.03Base material 120 oCFe 2pFeS24.30
pH = 3.5Fe2O328.86pH = 3.5Fe2O334.49
1 MPa H2SFeS240.110.1 MPa H2SFeS241.21
Cl- = 1000mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate12.88S 2pSulfate3.05
S855.52S879.24
FeS4.94FeS
FeS226.66FeS217.71
Heat affected zone 90 oCFe 2pFeS24.30Heat affected zone 120 oCFe 2pFeS62.74
pH = 3.5Fe2O324.64pH = 3.5Fe2O314.98
1 MPa H2SFeS251.050.1 MPa H2SFeS220.36
Cl- = 1000 mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate11.77S 2pSulfate1.55
S840.86S861.58
FeS28.31FeS5.90
FeS219.06FeS230.97
表3  腐蚀产物的XPS表征结果
图4  316L不锈钢WS、BM以及HAZ 3种试样的Mott-Schottky曲线
图5  316L不锈钢WS、BM以及HAZ 3种试样钝化膜的载流子浓度
图6  316L不锈钢WS、BM以及HAZ 3种试样钝化膜的XPS分析
[1] Fu A Q, Feng Y R, Cai R, et al. Downhole corrosion behavior of Ni-W coated carbon steel in spent acid & formation water and its application in full-scale tubing [J]. Eng. Failure Anal., 2016, 66: 566
[2] Li Y, Lin H C, Lv M, et al. The corrosion behavior of sulfur on the carbon steel used in oil & gas field with high concentration of H2S [J]. Corros. Sci. Prot. Technol., 1996, 8: 252
[2] (李 瑛, 林海潮, 吕 明 等. 元素硫对特高含H2S气井用油管钢的腐蚀 [J]. 腐蚀科学与防护技术, 1996, 8: 252)
[3] Wang C. The effect of sulfur deposition on gas well deliverability [J]. Petrol. Explorat. Dev., 1999, 26(5): 56
[3] (王 琛. 硫的沉积对气井产能的影响 [J]. 石油勘探与开发, 1999, 26(5): 56)
[4] Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
[4] (葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271)
[5] Zhang Q, Li Q A, Wen J B, et al. Progress in research on CO2/H2S corrosion of tubular goods [J]. Corros. Prot., 2003, 24: 277
[5] (张 清, 李全安, 文九巴 等. CO2/H2S对油气管材的腐蚀规律及研究进展 [J]. 腐蚀与防护, 2003, 24: 277)
[6] Pots B F M, Kapusta S D, John R C, et al. Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management [A]. Corrosion 2002 [C]. Denver, 2002
[7] Agrawal A K, Durr C, Koch G H. Sulfide films and corrosion rates of AISI 1018 carbon steel in saline solutions in the presence of H2S and CO2 at temperatures Up to 175F [A]. Corrosion 2004 [C]. New Orleans, 2004
[8] Wang Z, Zhang L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions [J]. Int. J. Miner. Metall. Mater., 2017, 24: 943
[9] Bai Z Q, Li H L, Liu D X, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment [J]. Mater. Prot., 2003, 36(4): 32
[9] (白真权, 李鹤林, 刘道新 等. 模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究 [J]. 材料保护, 2003, 36(4): 32)
[10] Schmitt G. Effect of elemental sulfur on corrosion in sour gas systems [J]. Corrosion, 1991, 47: 285
[11] Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
[12] Li K, Li T L, Shi D Y, et al. Effect of elemental sulfur on the corrosion of 825 alloy in high temperature and high pressure environment containing CO2/H2S [J]. Equip. Environ. Eng., 2020, 17(11): 10
[12] (李 科, 李天雷, 施岱艳 等. 元素硫对825合金在高温高压含CO2/H2S环境中腐蚀行为的影响 [J]. 装备环境工程, 2020, 17(11): 10)
[13] Zhan Z, Gao Q Y, Wang B, et al. Corrosion behavior of steels commonly used in heat exchanger tube in high-temperature medium of condensate water containing elemental sulfur [J]. Mater. Prot., 2022, 55(9): 81
[13] (战 征, 高秋英, 王 贝 等. 常用换热器管束钢材在高温含元素硫凝析水介质中的腐蚀行为 [J]. 材料保护, 2022, 55(9): 81)
[14] Li L, Li Z, Liu H X, et al. Applicability of 3 stainless steels in H2S/CO2 and high salinity brine environment [J]. Corros. Prot., 2022, 43(4): 7
[14] (李 磊, 李 中, 刘和兴 等. 三种不锈钢油管钢在高矿化度H2S/CO2环境中的适用性 [J]. 腐蚀与防护, 2022, 43(4): 7)
[15] Xiao W W, Zhu Y Y, Ge P L, et al. Analysis on corrosion failure of 20/316L bimetal lined pipe [J]. Mater. Prot., 2017, 50(7): 92
[15] (肖雯雯, 朱原原, 葛鹏莉 等. 20/316L双金属管的腐蚀失效原因分析 [J]. 材料保护, 2017, 50(7): 92)
[16] He W H, Liu Y, Yang S Y, et al. Effect of sensitization on electrochemical behavior and intergranular corrosion of conventional and additively manufactured 316L stainless steels [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1331
[16] (何武豪, 刘 阳, 杨思懿 等. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1331)
[17] Liu J Y, Dong L J, Zhang Y, et al. Research progress on sulfide stress corrosion cracking of dissimilar weld joints in oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 863
[17] (刘久云, 董立谨, 张 言 等. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 863)
[18] Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
[18] (李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 106)
[19] Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film [J]. Appl. Surf. Sci., 2003, 21: 321
[20] Liu Y C, Zhong X K, Hu J Y. Characteristics and mechanisms of elemental sulfur induced corrosion of sulfur-resistant steels in wet flow CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 369
[20] (刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理 [J]. 中国腐蚀与防护学报, 2022, 42: 369)
[21] Fang H, Young D, Nešić S. Elemental sulfur corrosion of mild steel at high concentrations of sodium chloride [J]. NACE Int., 2009, 25: 2592
[22] Lu X Y, Feng X G, Lu S, et al. Corrosion behavior of TIG welded joints of 316L stainless steel in H2S solutions [J]. Trans. China Weld. Inst., 2017, 38(5): 69
[22] (卢向雨, 冯兴国, 芦 笙 等. H2S溶液中316L不锈钢TIG焊接头的腐蚀性能 [J]. 焊接学报, 2017, 38(5): 69)
[23] Malhotra D, Dhillon J S, Shahi A S. New insights into metallurgical, corrosion, passive film and fatigue characteristics of AISI 316L submerged arc welded joints [J]. J. Mater. Sci., 2022, 57: 19571
[24] Yang L Q, Zhu S D, Li T, et al. Mechanism of elemental sulfur hydrolysis reaction [J]. Chem. Res. Appl., 2016, 28: 390
[24] (杨力强, 朱世东, 李 涛 等. 元素硫水解反应机理研究 [J]. 化学研究与应用, 2016, 28: 390)
[1] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[2] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[3] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[4] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[5] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[6] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[7] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[8] 韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[9] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[10] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[11] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[12] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[13] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[14] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[15] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.