Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 471-479     CSTR: 32134.14.1005.4537.2023.170      DOI: 10.11902/1005.4537.2023.170
  研究报告 本期目录 | 过刊浏览 |
在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响
邓志彬1,2, 胡枭1,3, 刘应彦1, 岳航4, 张千1, 汤海平1,2, 鲁锐3()
1.中国民用航空飞行学院民航安全工程学院 广汉 618307
2.民机火灾科学与安全工程四川省重点实验室 广汉 618307
3.中国民用航空飞行学院航空油料管理处 广汉 618307
4.中国石油天然气股份有限公司云南销售分公司 昆明 650000
Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution
DENG Zhibin1,2, HU Xiao1,3, LIU Yingyan1, YUE Hang4, ZHANG Qian1, TANG Haiping1,2, LU Rui3()
1.College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
2.Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Guanghan 618307, China
3.Aviation Fuel Management Division, Civil Aviation Flight University of China, Guanghan 618307, China
4.PetroChina Yunnan Marketing Company, Kunming 650000, China
引用本文:

邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
Zhibin DENG, Xiao HU, Yingyan LIU, Hang YUE, Qian ZHANG, Haiping TANG, Rui LU. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 471-479.

全文: PDF(15133 KB)   HTML
摘要: 

为明确磁场对L360输油管道腐蚀行为的影响,通过电化学测试及腐蚀形貌观察等手段,研究了L360管线钢母材及其焊接接头在不同强度磁场作用下3.5%NaCl溶液中的腐蚀行为。结果表明:随着磁场强度的增大,L360管线钢母材及其焊接接头的电荷转移电阻先增大后减小,腐蚀电流密度先减小后增大,较低强度磁场(60 mT)抑制了腐蚀,而较高强度磁场(120 mT)加速了腐蚀。相同磁场强度下,焊接接头腐蚀速率大于母材。机理分析表明:磁场作用力诱导金属离子吸附于电极界面,形成腐蚀产物膜阻碍腐蚀进行;高强度磁场作用下,Lorentz力能够破坏腐蚀产物膜,加速离子扩散,进而加速金属腐蚀。

关键词 磁场L360管线钢焊接接头3.5%NaCl溶液腐蚀行为    
Abstract

To clarify the influence of magnetic fields on the corrosion behavior of oil pipelines of L360 steel in service, the corrosion behavior of L360 pipeline steel and its welded joints in 3.5%NaCl solution by applied magnetic field of various intensities was studied via electrochemical tests and corrosion morphology characterization. The results indicate that as the magnetic field intensity increases, the charge transfer resistance of L360 pipeline steel and its welded joints initially increases and then decreases, while the corrosion current density initially decreases and then increases. Corrosion is inhibited by a lower intensity magnetic field (60 mT), while it is accelerated by a higher intensity magnetic field (120 mT). Moreover, by the same applied magnetic field intensity, the corrosion rate of the welded joints is higher than that of the base metal. It is proposed that the existed gradient magnetic field force may be favor the adsorption of metal ions at the electrode interface, resulting in the formation of a corrosion product film that hinders the corrosion process. Under the influence of a high-intensity magnetic field, the Lorentz force can disrupt the corrosion product film, accelerating ion diffusion and subsequently accelerating the corrosion of the steel.

Key wordsmagnetic field    L360 pipeline steel    welded joint    3.5%NaCl solution    corrosion behavior
收稿日期: 2023-05-22      32134.14.1005.4537.2023.170
ZTFLH:  TE988  
基金资助:中央高校基本科研业务费专项(J2020-124)
通讯作者: 鲁锐,E-mail: 95555846@qq.com,研究方向为航空油料安全管理
Corresponding author: LU Rui, E-mail: 95555846@qq.com
作者简介: 邓志彬,男,1984年生,博士,副教授
图1  实验装置图
图2  不同磁场强度下L360管线钢母材及焊接接头在3.5%NaCl水溶液中的极化曲线
SpecimenMF strength / mTEcorr / VIcorr / A·cm-2βaβc
BM0-0.724628.0933 × 10-60.0691350.10839
60-0.743347.1909 × 10-60.0748290.081773
120-0.721158.4428 × 10-60.0768190.10125
WJS0-0.720858.4982 × 10-60.0634270.1378
60-0.729767.6877 × 10-60.0664690.12187
120-0.712899.2359 × 10-60.0753290.13953
表1  极化曲线拟合参数
图3  不同磁场强度下L360管线钢母材及焊接接头在3.5%NaCl水溶液中的腐蚀速率
图4  不同磁场强度下L360管线钢母材及焊接接头的电化学阻抗谱
图5  等效电路图
SpecimenMF strength / mTRS / Ω·cm2nCPE,Y0 / Ω-1·cm-2·s-1Rct / kΩ·cm2
BM06.330.7981.24 × 10-31.12
605.760.7501.55 × 10-31.20
1205.390.7761.36 × 10-31.09
WJS06.040.7731.35 × 10-31.09
606.140.7791.33 × 10-31.26
1206.720.7970.97 × 10-30.97
表2  电化学阻抗谱的拟合参数
图6  不同磁场强度下L360管线钢母材及焊接接头试样宏观腐蚀形貌
图7  不同磁场强度下L360管线钢母材及焊接接头试样去除腐蚀产物后的宏观形貌
图8  不同磁场强度下L360管线钢母材及焊接接头试样去除腐蚀产物前的微观形貌
图9  不同磁场强度下L360管线钢母材及焊接接头试样去除腐蚀产物后的微观形貌
图10  腐蚀产物膜的EDS分析结果
图11  腐蚀产物的XPS分析
SpecimenMF strength / mTOFe
BM024.40068.400
6010.20080.200
12029.67061.838
WJS020.48070.330
607.00081.300
12033.26766.234
表3  腐蚀产物膜的EDS分析结果
1 Wu M, Xie F, Chen X, et al. Research progress and thinking on corrosion failure of buried oil and gas pipelines[J]. Oil Gas Storage Trans., 2022, 41: 712
1 吴 明, 谢 飞, 陈 旭 等. 埋地油气管道腐蚀失效研究进展及思考[J]. 油气储运, 2022, 41: 712
2 Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron[J]. J. Chin. Soc. Corros. Prot., 1994, 8: 123
2 王 晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响[J]. 中国腐蚀与防护学报, 1994, 8: 123
3 Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area[J]. Corros. Prot., 2019, 40: 474
3 惠海军, 戴乾生, 陈 凯 等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响[J]. 腐蚀与防护, 2019, 40: 474
4 Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines[J]. Int. J. Electr. Power Energy Syst., 2017, 91: 34
doi: 10.1016/j.ijepes.2017.03.005
5 Ou Z Y, Han Z D, Cen J S, et al. Present status and perspectives of inspection technology for buried pipeline[J]. Meas. Control Technol., 2023, 42(6): 1
5 欧正宇, 韩赞东, 岑佶松 等. 埋地管道检测技术现状与展望[J]. 测控技术, 2023, 42(6): 1
6 Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels[A]. 2006 International Pipeline Conference[C]. Calgary, 2006: 921
7 Chen J, Chiu T M, Cai W J. Effects of magnetic field on the corrosion reactions of A572 steel in NaCl aqueous solution[J]. J. Mater. Eng. Perform., 2022, 31: 9294
doi: 10.1007/s11665-022-06920-3
8 Zhao S L, You Z F, Zhang X W, et al. Magnetic field effects on the corrosion and electrochemical corrosion of Fe83Ga17 alloy[J]. Mater. Charact., 2021, 174: 110994
doi: 10.1016/j.matchar.2021.110994
9 Obi J T, Mejeha I M, Okeoma K B. The inhibitive effect of magnetic fields on mild steel corrosion in acidic media[J]. Zaštita Mater., 2023, 64: 30
10 Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations[J]. Mater. Prot., 2021, 54(1): 7
10 姜超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响[J]. 材料保护, 2021, 54(1): 7
11 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution[J]. J. Mater. Sci. Technol., 2010, 26: 355
12 Parapurath S, Ravikumar A, Vahdati N, et al. Effect of magnetic field on the corrosion of API-5L-X65 steel using electrochemical methods in a flow loop[J]. Appl. Sci., 2021, 11: 9329
doi: 10.3390/app11199329
13 Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
13 张康南, 吴明, 谢飞 等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37: 148
doi: 10.11902/1005.4537.2016.001
14 Wang D, Li T J, Xie F, et al. Effect of magnetic field on the electrochemical corrosion behavior of X80 pipeline steel[J]. Constr. Build. Mater., 2022, 350: 128897
doi: 10.1016/j.conbuildmat.2022.128897
15 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
15 杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 501
16 Yang Y, Luo Y L, Sun M, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in simulated soil solution[J]. Int. J. Electrochem. Sci., 2021, 16: 211010
doi: 10.20964/2021.10.33
17 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]. Beijing: Standards Press of China, 2016
17 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除[S]. 北京: 中国标准出版社, 2016
18 Tian G, Wei A J, Huo F Y, et al. An experimental study of the magnetic field on metal corrosion[J]. Pipeline Tech. Equip., 2010, (1): 50
18 田 光, 魏爱军, 霍富永 等. 磁场对金属腐蚀的实验研究[J]. 管道技术与设备, 2010, (1): 50
19 Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure[D]. Shenyang: Shenyang Ligong University, 2020
19 祝李洋. X80管线钢及其焊缝组织的微生物腐蚀[D]. 沈阳: 沈阳理工大学, 2020
20 Qin Q Y, Xu J, Wei B X, et al. Biotic enhancement of Desulfovibrio desulfuricans on multi-factor influenced corrosion of X80 steel in saline soil[J]. Corros. Sci., 2022, 200: 110228
doi: 10.1016/j.corsci.2022.110228
21 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
22 Sugae K, Kamimura T, Asakura R, et al. Electrochemical reduction and re-oxidation behavior of α, β, and γ-iron oxy-hydroxide films on electrodes[J]. Mater. Corros., 2019, 70: 187
23 Liu G X. Study on corrosion behavior of X100 steel in marine dry-wet cycle environment[D]. Qingdao: China University of Petroleum (East China), 2019
23 刘广鑫. 海洋干湿交替环境中X100钢腐蚀行为研究[D]. 青岛: 中国石油大学(华东), 2019
24 Zhao S Z, Wang Y X, Zhao Y X, et al. The effect of magnetic field pretreatment on the corrosion behavior of carbon steel in static seawater[J]. RSC Adv., 2020, 10: 2060
doi: 10.1039/c9ra09079g pmid: 35494611
25 Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron[J]. Electrochim. Acta, 2011, 56: 5866
doi: 10.1016/j.electacta.2011.04.126
26 Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution[J]. Electrochim. Acta, 2014, 117: 113
doi: 10.1016/j.electacta.2013.11.100
27 Sharma S K, Maheshwari S. A review on welding of high strength oil and gas pipeline steels[J]. J. Nat. Gas Sci. Eng., 2017, 38: 203
doi: 10.1016/j.jngse.2016.12.039
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[3] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[5] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[6] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[8] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[9] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[10] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[11] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[12] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[13] 程鹏, 刘静, 牟文广, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢焊接接头在模拟工业大气环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 95-103.
[14] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[15] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.